ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ЧЕРЕМХОВСКИЙ ГОРНОТЕХНИЧЕСКИЙ КОЛЛЕДЖИМ. М.И. ЩАДОВА»

Утверждаю: Директор ГБПОУ «ЧГТК им. М.И. Щадова» С.Н. Сычев 21 июня 2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП. 09 ТЕХНИЧЕСКАЯ МЕХАНИКА

профессионального учебного цикла

программы подготовки специалистов среднего звена

по специальности

23.02.01 Организация перевозок и управление на транспорте (по видам)

PACCMOTPEHA

Рассмотрено на заседании ЦК «Горных дисциплин» Протокол №10 «06» июня 2023 г. Председатель: Жук Н.А.

ОДОБРЕНА

Методическим советом колледжа Протокол №5 от 7 июня 2023 года Председатель МС: Т.В. Власова

Рабочая программа учебной дисциплины **«Техническая механика»** разработана на основе ФГОС СПО по специальности **23.02.01 Организация перевозок и управление** на транспорте (по видам).

Разработчик: Пилипченко Н.А. – преподаватель специальных дисциплин ГБПОУ «ЧГТК им. М. И. Щадова»

СОДЕРЖАНИЕ

		стр
1.	ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2.	СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	7
3.	УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ	18
4.	ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ РЕАЛИЗАЦИИ ПРОГРАММЫ	19
5.	КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	20
	ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЕННЫХ В	22
	РАБОЧУЮ ПРОГРАММУ	

1 ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

Техническая механика

1.1 Область применения программы

Рабочая программа учебной дисциплины является частью программы подготовки специалистов среднего звена в соответствии с ФГОС СПО по специальности 23.02.01 Организация перевозок и управление на транспорте (по видам).

Рабочая программа учебной дисциплины может быть использована в дополнительном профессиональном образовании.

1.2 Место дисциплины в структуре программы подготовки специалистов среднего звена

Учебная дисциплина **Техническая механика** входит в профессиональный учебный цикл учебного плана.

1.3 Цели и задачи дисциплины – требования к результатам освоения дисциплины

Базовая часть - не предусмотрена

Вариативная часть

В результате освоения вариативной части дисциплины студент должен уметь:

- -производить расчет на растяжение и сжатие на срез, смятие, кручение и изгиб;
- -выбирать детали и узлы на основе анализа их свойств для конкретного применения;

В результате освоения учебной дисциплины студент должен знать:

- основные понятия и аксиомы теоретической механики, законы равновесия и перемещения тел;
- методики выполнения основных расчетов по теоретической механике, сопротивлению материалов и деталям машин;
- -основы проектирования деталей и сборочных единиц;
- -основы конструирования.

Содержание дисциплины ориентировано на подготовку студентов к освоению профессиональных модулей по специальности 23.02.01 Организация перевозок и

управление на транспорте (по видам) профессиональными компетенциями (ПК):

ПК 2.2. Обеспечивать безопасность движения и решать профессиональные задачи посредством применения нормативно-правовых документов.

В процессе освоения дисциплины студент должен овладевать общими компетенциями (ОК):

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- OК 02. Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности;
- ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по финансовой грамотности в различных жизненных ситуациях;
- ОК 04. Эффективно взаимодействовать и работать в коллективе и команде;
- ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста;
- ОК 06. Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных общечеловеческих ценностей, в том числе с учетом гармонизации межнациональных и межрелигиозных отношений, применять стандарты антикоррупционного поведения;
- ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях;
- OK 08. Использовать средства физической культуры для сохранения и укрепления здоровья в процессе профессиональной деятельности и поддержания необходимого уровня физической подготовленности;
- OК 09. Пользоваться профессиональной документацией на государственном и иностранном языках.";

1.4 Количество часов на освоение программы учебной дисциплины

Объем образовательной программы 195 часов, в том числе:

- учебных занятий <u>132</u> часа, в том числе на практические (лабораторные) занятия <u>20</u> часов, курсовые работы (проекты) часов;
 - самостоятельные работы <u>62</u> часа;
 - консультация часов;
 - промежуточную аттестацию 1 час.

2 СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1 Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Объем образовательной программы (ВСЕГО)	195
Всего учебных занятий,	132
в том числе:	
теоретическое обучение	112
практические занятия	20
Самостоятельная работа (всего)	62
В том числе:	
- решение задач	48
- изучение дополнительной и справочной литературы	6
- подготовка рефератов	8
Консультация	-
Промежуточная аттестация в форме	1
дифференцированного зачета	

2.2 Тематический план и содержание учебной дисциплины Техническая механика

Наименование разделов и тем	№ 3ан ят ия	Содержание учебного материала, лабораторные и практические занятия, самостоятельные работы студентов	Объем часов	Уровень	Коды компетенций, формированию которых способствует элемент программы
		CEMECTP №3	38		
Раздел 1. Теорети	ическа	я механика	58		
Тема 1.1.		Содержание учебного материала	36		
Статика	1	Основные понятия и аксиомы статики. Материальная точка. Абсолютно твердое тело.	2	2	
	2	Векторы. Действия над векторами. Проекция вектора на две взаимно пересекающиеся оси.	2	2	OK 01, OK 02, OK 04, OK 05, OK 07,
	3	Сила; сила-вектор. Система сил. Эквивалентные системы сил. Аксиомы статики. Перенос силы вдоль линии ее действия. Свободное и несвободное тело.	2	2	ОК 08, ОК 09 ПК 2.2.
		Связи. Реакция связей.	2	2	
	4	Самостоятельная работа № 1. Решение задач.	2		
	5	Плоская система сходящихся сил. Система сходящихся сил. Разложение силы на две составляющие, приложенные в той же точке. Сложение плоской системы сходящихся сил. Силовой многоугольник. Геометрическое условие равновесия плоской системы сходящихся сил.	2	2	
	6	Аналитическое определение равнодействующей плоской системы сходящихся сил (метод проекции). Аналитическое условие равновесия плоской системы сходящихся сил. Уравнение равновесия. Самостоятельная работа № 2.	2	2	

	Решение задач.			
	Плоская система произвольно расположенных сил. Момент силы	2	2	
7	относительно точки. Приведение силы к данной точке (центру). Приведение			
	плоской системы к данной точке.			
	Главный вектор и главный момент плоской системы сил. Уравнения			
8	равновесия плоской системы сил (три вида). Уравнение равновесия плоской			
	системы параллельных сил (два вида).			
9	Балочные системы. Виды опор. Понятие о статически неопределимых			
	системах. Связи с трением. Особенности трения качения.			
	Фермы. Общие понятия о ферме. Квалификация ферм. Область применения	2	2	
	ферм. Устройство. Методы расчета ферм. Три метода расчета усилий в стержнях			
10	плоских ферм: метод вырезания узлов, построение диаграммы Максвелла-			
	Кремоны, метод Риттера.			
	Самостоятельная работа № 3.	2		
	Решение задач.			
11	Пространственная система сил. Параллелепипед сил. Проекция силы на три			
	взаимно перпендикулярных оси. Условие равновесия пространственной системы	2	2	
	сходящихся сил.			
12	Момент силы относительно оси. Понятие о главном векторе и главном моменте	2	2	
	произвольной пространственной системы сил.			
13	Условия равновесия и шесть уравнений равновесия (без вывода).	2	2	
	Самостоятельная работа № 4.	2		
	Решение задач.			
14	Центр тяжести. Понятие о центре параллельных сил . Формулы для	2	2	
	определения положения центра параллельных сил (без вывода).			
15	Сила тяжести. Центр тяжести тела как центр параллельных сил. Формулы	2	2	
	для определения положения центра тяжести тела, имеющего вид тонкой			
	однородной пластины. Положение центра тяжести прямоугольника и			
	треугольника. Определение положения центра тяжести тонких пластинок или			

			1	
		сечений, составленных из проектных геометрических фигур и из стандартных		
		профилей проката.		
		Самостоятельная работа № 5.	2	
		Решение задач.		
	16	Практическое занятие № 1.	2	2
		Определение проекций сил на оси х и у.		
	17	Практическое занятие № 2.	2	2
		Определение усилий и подбор элементов плоской системы сходящихся сил.		
	18	Практическое занятие № 3.	2	2
		Определение центра тяжести плоских фигур		
Тема 1. 2.		Содержание учебного материала	14	
Кинематика		Основные понятия кинематики. Кинематика как наука о механическом	2	2
		движении, изучаемом с точки зрения геометрии. Основные понятия кинематики:		
	19	траектория, расстояние, путь, время, скорость, ускорение. Кинематика точки.		
	19	Задание движения точки естественным и координатным способами.		
		Самостоятельная работа № 6.	2	
		Решение задач.		
		CEMECTP №4	95	
		Скорость. Ускорение полное, нормальное и касательное. Виды движения	2	2
	20	точки в зависимости от ускорения. Равномерное движение точки.		
		Кинематические графики.		
		Простейшие движения твердого тела. Поступательное движение твердого тела	2	2
		и его свойства. Вращательное движение твердого тела вокруг неподвижной оси.		
		Способы передачи вращательного движения. Угловое перемещение. Угловая		
	21	скорость, частота вращения. Единицы угловой скорости и частоты вращения,		
	21	связь между ними. Угловое ускорение. Единицы углового ускорения. Линейные		
		скорости точек вращающегося тела.		
		Самостоятельная работа № 7.	2	
		Самостоятельная работа № 7. Решение задач.	2	

22 вращающегося тела. Выражение нормального и касательного ускорения точки соответственно через угловую скорость и угловое ускорение тела. Сложное движение точки. Относительное, переносное и абсолютное движение точки. Теорема сложения скоростей (без вывода). Самостоятельная работа № 8. Решение задач. Плоскопараллельное движение твердого тела. Понятие о плоскопараллельном движении тела. Разложение плоскопараллельного движения на поступательное и вращательное. Теорема о сложении скоростей. Мгновенный центр скоростей, использование его при определении абсолютной скорости любой точки тела. Самостоятельная работа № 9. Решение задач. Содержание учебного материала Основные понятия и аксиомы динамики. Первая аксиома (принцип инерции). Вторая аксиома (основной закон динамики точки). Третья аксиома (закон независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. Самостоятельная работа № 10. Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		Нормальное (центростремительное) касательное и полное ускорение точек	2	2
Сложное движение точки. Относительное, переносное и абсолютное движение точки. Теорема сложения скоростей (без вывода). 2 Самостоятельная работа № 8. 2 Решение задач. Плоскопараллельное движение твердого тела. Понятие о плоскопараллельном движении тела. Разложение плоскопараллельного движения на поступательное и вращательное. Теорема о сложении скоростей. Мгновенный центр скоростей, использование его при определении абсолютной скорости любой точки тела. 2 Самостоятельная работа № 9. 2 Решение задач. Содержание учебного материала 6 Основные понятия и аксиомы динамики. Первая аксиома (принцип инерции). Вторая аксиома (основной закон динамики точки). Третья аксиома (закон независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. 2 Самостоятельная работа № 10. 2 Решение задач. 2 Метод кинетостатики для материальной точки. Свободная и несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики. 2	2	22 вращающегося тела. Выражение нормального и касательного ускорения точки		
точки. Теорема сложения скоростей (без вывода). Самостоятельная работа № 8. Решение задач. Плоскопараллельное движение твердого тела. Понятие о плоскопараллельном движении тела. Разложение плоскопараллельного движения на поступательное и вращательное. Теорема о сложении скоростей. Мгновенный центр скоростей, использование его при определении абсолютной скорости любой точки тела. Самостоятельная работа № 9. Решение задач. Содержание учебного материала Основные понятия и аксиомы динамики. Первая аксиома (принцип инерции). Вторая аксиома (основной закон динамики точки). Третья аксиома (закон независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. Самостоятельная работа № 10. Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		соответственно через угловую скорость и угловое ускорение тела.		
Самостоятельная работа № 8. 2 Плоскопараллельное движение твердого тела. Понятие о плоскопараллельном движении тела. Разложение плоскопараллельного движения на поступательное и вращательное. Теорема о сложении скоростей. Мгновенный центр скоростей, использование его при определении абсолютной скорости любой точки тела. 2 Самостоятельная работа № 9. 2 Решение задач. 6 Основные понятия и аксиомы динамики. Первая аксиома (принцип инерции). Вторая аксиома (основной закон динамики точки). Третья аксиома (закон независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. 2 Самостоятельная работа № 10. 2 Решение задач. 2 Метод кинетостатики для материальной точки. Свободная и несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики. 2		Сложное движение точки. Относительное, переносное и абсолютное движение	2	2
Самостоятельная работа № 8. Решение задач. Плоскопараллельное движение твердого тела. Понятие о плоскопараллельном движении тела. Разложение плоскопараллельного движения на поступательное и вращательное. Теорема о сложении скоростей. Мгновенный центр скоростей, использование его при определении абсолютной скорости любой точки тела. Самостоятельная работа № 9. Решение задач. Содержание учебного материала Основные понятия и аксиомы динамики. Первая аксиома (принцип инерции). Вторая аксиома (основной закон динамики точки). Третья аксиома (закон независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. Самостоятельная работа № 10. Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		точки. Теорема сложения скоростей (без вывода).		
24 Плоскопараллельное движение твердого тела. Понятие о плоскопараллельном движении тела. Разложение плоскопараллельного движения на поступательное и вращательное. Теорема о сложении скоростей. Мгновенный центр скоростей, использование его при определении абсолютной скорости любой точки тела. 2		Самостоятельная работа № 8.	2	
24 движении тела. Разложение плоскопараллельного движения на поступательное и вращательное. Теорема о сложении скоростей. Мгновенный центр скоростей, использование его при определении абсолютной скорости любой точки тела. Самостоятельная работа № 9. Решение задач. Содержание учебного материала Основные понятия и аксиомы динамики. Первая аксиома (принцип инерции). Вторая аксиома (основной закон динамики точки). Третья аксиома (закон независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. Самостоятельная работа № 10. Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		Решение задач.		
24 вращательное. Теорема о сложении скоростей. Мгновенный центр скоростей, использование его при определении абсолютной скорости любой точки тела. Самостоятельная работа № 9. Решение задач. Содержание учебного материала Основные понятия и аксиомы динамики. Первая аксиома (принцип инерции). Вторая аксиома (основной закон динамики точки). Третья аксиома (закон независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. Самостоятельная работа № 10. Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		Плоскопараллельное движение твердого тела. Понятие о плоскопараллельном	2	2
24 использование его при определении абсолютной скорости любой точки тела. Самостоятельная работа № 9. Решение задач. Содержание учебного материала Основные понятия и аксиомы динамики. Первая аксиома (принцип инерции). Вторая аксиома (основной закон динамики точки). Третья аксиома (закон независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. Самостоятельная работа № 10. Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		движении тела. Разложение плоскопараллельного движения на поступательное и		
Тема 1. 3. Содержание учебного материала 2 Тема 1. 3. Содержание учебного материала 6 Динамика Основные понятия и аксиомы динамики. Первая аксиома (принцип инерции). 2 Вторая аксиома (основной закон динамики точки). Третья аксиома (закон независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. Самостоятельная работа № 10. 2 Метод кинетостатики для материальной точки. Свободная и несвободная материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		вращательное. Теорема о сложении скоростей. Мгновенный центр скоростей,		
Самостоятельная работа № 9. 2 Решение задач. Содержание учебного материала 6 Основные понятия и аксиомы динамики. Первая аксиома (принцип инерции). 2 Вторая аксиома (основной закон динамики точки). Третья аксиома (закон независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. 2 Самостоятельная работа № 10. 2 Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.	4	использование его при определении абсолютной скорости любой точки тела.		
Тема 1. 3. Динамика Основные понятия и аксиомы динамики. Первая аксиома (принцип инерции). Вторая аксиома (основной закон динамики точки). Третья аксиома (закон независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. Самостоятельная работа № 10. Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		Самостоятельная работа № 9.	2	
Основные понятия и аксиомы динамики. Первая аксиома (принцип инерции). Вторая аксиома (основной закон динамики точки). Третья аксиома (закон независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. Самостоятельная работа № 10. Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		Решение задач.		
Вторая аксиома (основной закон динамики точки). Третья аксиома (закон независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. Самостоятельная работа № 10. Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.	ма 1. 3.	Содержание учебного материала	6	
независимости действия сил). Четвертая аксиома (закон равенства действия и противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. Самостоятельная работа № 10. Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.	намика	Основные понятия и аксиомы динамики. Первая аксиома (принцип инерции).	2	2
 противодействия). Масса материальной точки, единицы массы в Международной системе (СИ). Зависимость между массой и силой тяжести. Самостоятельная работа № 10. Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики. 		Вторая аксиома (основной закон динамики точки). Третья аксиома (закон		
Международной системе (СИ). Зависимость между массой и силой тяжести. Самостоятельная работа № 10. Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная 2 материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		независимости действия сил). Четвертая аксиома (закон равенства действия и		
Самостоятельная работа № 10. Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.	2	25 противодействия). Масса материальной точки, единицы массы в		
Решение задач. Метод кинетостатики для материальной точки. Свободная и несвободная 2 материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		Международной системе (СИ). Зависимость между массой и силой тяжести.		
Метод кинетостатики для материальной точки. Свободная и несвободная 2 материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		Самостоятельная работа № 10.	2	2
материальная точка. Возникновение силы инерции при движении несвободной материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		Решение задач.		
материальной точки; касательная и нормальная составляющие силы инерции при криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		Метод кинетостатики для материальной точки. Свободная и несвободная	2	2
26 криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		материальная точка. Возникновение силы инерции при движении несвободной		
		материальной точки; касательная и нормальная составляющие силы инерции при		
= *		26 криволинейном движении точки. Принцип Даламбера; метод кинетостатики.		
Работа и мощность. Работа постоянной силы при прямолинейном движении.		Работа и мощность. Работа постоянной силы при прямолинейном движении.		
Самостоятельная работа № 11.		Самостоятельная работа № 11.	2	
Решение задач.		1		

		Практическое занятие № 4.	2		
	27	Определение траектории, скорости и ускорения точки			
Раздел 2. Сопро	 гивлен	ние материалов	50		
Тема 2.1.		Содержание учебного материала	6		
Основные понятия сопротивления	28	Основные задачи сопротивления материалов. Деформируемое тело. Упругость и пластичность. Понятие о расчетах прочность, жесткость, устойчивость.	2	2	OK 01, OK 02, OK 04, OK 05, OK 07,
материалов	20	Основные гипотезы и допущения, применяемые в сопротивлении материалов о свойствах деформируемого тела и характере деформации.	2	2	OK 08, OK 09
	29	Самостоятельная работа № 12. Решение задач.	2		ПК 2.2.
	30	Метод сечений . Применение метода сечений для определения внутренних силовых факторов, возникающих в поперечном сечении бруса. Напряжение полное. Нормальное и касательное.	2	2	
		Самостоятельная работа № 13.	2		
		Решение задач.			
Тема 2.2.		Содержание учебного материала	8		
Растяжение и сжатие	31	Продольные силы и их эпюры. Гипотеза плоских сечений. Нормальное напряжение в поперечных сечениях бруса. Продольная и поперечная деформация при растяжении (сжатии). Закон Гука. Модуль продольной упругости. Коэффициент поперечной деформации (коэффициент Пуассона).	2	2	
		Самостоятельная работа № 14. Решение задач.	2		
	32	Жесткость сечения и жесткость бруса. Определение осевых перемещений поперечных сечений бруса. Анализ напряженного состояния при одноосном растяжении (сжатии).	2	2	
		Самостоятельная работа № 15.	2		
		Решение задач.			
	33	Характеристики пластичных свойств : относительное остаточное удлинение и относительное поперечное сжатие. Диаграмма растяжения и сжатия хрупких материалов.	2	2	

Тема 2.3. Содержание учебного материала 2	2	
Смятие, сдвиг, срез Практические расчеты на срез и смятие. Срез, основные расчетные 2	2	
Смятие, сдвиг, срез Практические расчеты на срез и смятие. Срез, основные расчетные 2	2	
срез Практические расчеты на срез и смятие. Срез, основные расчетные 2	2	
35 формулы. Расчеты на срезе и смятие соединений болтами, заклейками.		
Самостоятельная работа № 16.		-
Решение задач.		
Тема 2.4 Содержание учебного материала 4		
Геометрические Статические моменты сечений. Осевые и полярные моменты инерции и 2	2	
плоских сечений 36 сопротивления.		
плоских сечений 36 Самостоятельная работа № 17.		
Решение задач.		
Главные центральные моменты инерции и сопротивления прямоугольного, 2	2	
круглого, кольцевого и составных сечений, имеющих не менее одной оси		
37 симметрии.		
Самостоятельная работа № 18.		
Решение задач.		
Тема 2.5 Содержание учебного материала 6		
Кручение Кручение. Основные понятия и определения.	2	
38 Самостоятельная работа № 19. 2		
Решение задач.		
Кручение прямого бруса круглого поперечного сечения . Крутящий момент, 2	2	
построение эпюр. Напряжения, возникающие в поперечных сечениях бруса.		
39 Расчеты на прочность и жесткость.		
Самостоятельная работа № 20.		
Решение задач.		

		Практическое занятие № 6.	2	2
	40	Расчет валов и осей на кручение. Построение эпюр крутящих моментов		
Тема 2.6. Виды изгибов		Содержание учебного материала	24	
		Основные понятия и определения. Классификация видов изгиба: прямой	2	2
		изгиб, чистый и поперечный. Внутренние силовые факторы при прямом изгибе		
	41	- поперечная сила и изгибающий момент.		
		Самостоятельная работа № 21.	2	
		Решение задач.		
		Нормальные напряжения, возникающие в поперечных сечениях бруса при	2	2
	42	чистом изгибе.		
		Самостоятельная работа № 22.	2	
		Решение задач. Расчеты на прочность при изгибе. Рациональные формы поперечных сечений	2	2
	43	балок, выполненных из материалов, одинаково и различно сопротивляющихся	2	2
		растяжению и сжатию.		
		Самостоятельная работа № 23.	2	
		Решение задач.	2	
	44	Понятие о касательных напряжениях при изгибе.	2	2
	45	Расчеты на усталость. Условия работы деталей машин. Возникновение	2	2
	45	переменных напряжений. Основные характеристики цикла. Кривая усталости.		
		Предел выносливости. Факторы, влияющие на предел выносливости.	2	2
	46	Коэффициент снижения предела выносливости. Определение коэффициента		
		запаса. Понятие о расчетах на усталость.		
	47	Устойчивость сжатых стержней. Понятие об устойчивых и неустойчивых	2	2
	7/	формах упругого равновесия. Критическая сила. Условие устойчивости.		
	48	Формула Эйлера (без вывода) при различных случаях опорных закреплений	2	2
	70	сжатого стержня. Критическое напряжение.		
		Гибкость. Предел применимости формулы Эйлера, предельная гибкость.	2	2
	49	Эмпирические формулы для критических напряжений в функции от гибкости.		
		Самостоятельная работа № 24.	2	

		Решение задач.]
		Практическое занятие № 7.	2	2	_
	50	Построение эпюр продольных и нормальных напряжений при растяжении и			
		сжатии.			
	<i>E</i> 1	Практическое занятие № 8.	2		
	51	Расчет и подбор сечения балки на поперечный изгиб.			
	52	Практическое занятие № 9.	2	2	
	52	Расчет на устойчивость сжатых стержней.			
Раздел 3. Детали	маши	IH	25		OK 01, OK 02, OK
Тема 3.1.		Содержание учебного материала	4		04, OK 05, OK 07,
Работоспособно		Основные положения. Цели и задачи раздела "Детали машин". Основные	2	2	ОК 08, ОК 09
сть машин	53	определения. Механизм и машина. Классификация машин. Детали машин и их			ПК 2.2.
и механизмов		классификация.			
		Основные критерии работоспособности и расчета деталей машин:	2	2	
		прочность и жесткость. Проектные и проверочные расчеты.			
	54	Самостоятельная работа № 25.	2		
		Проработка конспектов занятий, учебной и специальной технической			
		литературы. Ответы на контрольные вопросы.			
Тема 3.2.		Содержание учебного материала	18		
Преобразование	55	Общие сведения о передачах. Вращательное движение и его роль в машинах	2	2	
движений		и механизмах. Назначение передач в машинах.			
		Зубчатые передачи. Общие сведения о зубчатых передачах: достоинства и	2	2	
	56	недостатки, область применения. Классификация зубчатых передач.			
	30	Самостоятельная работа № 26.	2		
		Написание реферата «Виды разрушения зубьев зубчатых колес».			
		Прямозубые и косозубые цилиндрические передачи. Основные	2	2	
	57	геометрические соотношения. Силы, действующие в зацеплении. Основы			
		расчета зубьев на контактную усталость и усталость при изгибе.			
	58	Храповые механизмы. Редукторы. Виды. Особенности расчётов. Достоинства	2	2	
	20	и недостатки, область применения.			

T T				
	Самостоятельная работа № 27.	2		
	Проработка конспектов занятий, учебной и специальной технической			
	литературы. Написание реферата на тему «Редукторы».			
	Передача винт-гайка. Общие сведения о винтовых механизмах. Силовые	2	2	
	соотношения и КПД винтовой пары. Понятие о расчете передачи на			
59	износостойкость. Основные параметры и расчетные коэффициенты.			
	Самостоятельная работа № 28.	2		
	Написание реферата на тему «Клиноременные передачи. Достоинства и			
	недостатки».			
	Червячные передачи. Общие сведения о червячных передачах. Достоинства и	2		
	недостатки, область применения. Материалы червяков и червячных колес.		2	
	Геометрические соотношения и силы, действующие в зацеплении. КПД			
60	червячной передачи.			
	Самостоятельная работа № 29.	2		
	Проработка конспектов занятий, учебной и специальной технической			
	литературы. Ответы на контрольные вопросы.			
	Ременные, клиноременные и цепные передачи. Основные сведения о	2	2	
	передачах: устройство, достоинства и недостатки, область применения.			
(1	Приводные цепи и звездочки.			
61	Самостоятельная работа № 30.	2		
	Проработка конспектов занятий, учебной и специальной технической			
	литературы. Ответы на контрольные вопросы.			
62	Вариаторы.	2	2	
02				
	Разъемные и неразъёмные соединения. Достоинства и недостатки, область	2	2	
	применения.			
63	Самостоятельная работа № 31.	2		
	Проработка конспектов занятий, учебной и специальной технической			
	литературы. Написание реферата на тему «Муфты. Виды муфт. Область			
	применения».			

Тема 3.3.		Содержание учебного материала	7		
Детали передач	64	Валы, оси, шпоночные соединения. Валы и оси, их назначение, конструкции и	2	2	
	04	материалы. Основы расчета валов и осей на прочность и жесткость.			
	65	Подшипники. Подшипники скольжения и качения. Классификация, устройство	2	2	
	03	и сравнительная характеристика.			
	66	Практическое занятие № 10.	2	2	
	00	Подбор подшипников качения и скольжения.			
	67	Дифференцированный зачет	1	2	
Всего:			195		

3 УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1 Требования к минимальному материально-техническому обеспечению

Реализация учебной дисциплины осуществляется в учебном кабинете Технической механики

Оборудование учебного кабинета:

- -рабочие места по количеству обучающихся;
- -рабочее место преподавателя;
- -комплект учебно-наглядных пособий по технической механике;
- -объемные модели по статике сооружений, сопротивлению материалов и теоретической механике, деталям машин.
- -образцы деталей

техническими средствами обучения:

- компьютер;

4. ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ОБУЧЕНИЯ

4.1 Печатные издания:

Основные:

- О-1. Кузьмина, Н. А. Техническая механика: учебное пособие / Н. А. Кузьмина. Ростов-на-Дону: Феникс, 2020. 205 с.
- О-2. Эрдеди А.А. Техническая механика: учебник для студ. учреждений сред. проф. образования / А.А. Эрдеди. 8-е изд., стер. М. : Образовательно-издательский центр «Академия», 2023. 528 с.

Дополнительные источники:

- Д-1. Аркуша, А.И. Руководство к решению задач по теоретической механике: учебное пособие /А.И. Аркуша. М.: Высш.шк., 2000.—336с.
- Д-2. Брадис, В.М. Четырехзначные математические таблицы : таблицы / В.М. Брадис. М.: Просвещение, 2000.- 56c.
- Д-3. Олофинская, В.П. Техническая механика.: учебное пособие / В.П. Олофинская. -М.: ИД "ФОРУМ"-ИНФРА-М, 2012.-352с.
- Д-4. Сетков, В.И. Сборник задач по технической механике: учебное пособие / В.И. Сетков. -М.: Академия, 2010.-224 с.

4.2 Электронные издания (электронные ресурсы):

- 1. Кузьмина, Н. А. Техническая механика: учебное пособие / Н. А. Кузьмина.
- Ростов-на-Дону: Феникс, 2020. 205 c. ЭБС ЛАНЬ.
- 2. Эрдеди А.А. Техническая механика: учебник для студ. учреждений сред. проф. образования / А.А. Эрдеди. 8-е изд., стер. М.: Образовательно-издательский центр «Академия», 2023. 528 с.

5 КОНРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Результаты	Критерии оценки	Формы и методы
обучения		контроля и
(освоенные умения,		оценки
усвоенные знания)		результатов
,		обучения
знать:		
основные понятия и	«Отлично» - теоретическое содержание	-устный опрос;
аксиомы	курса освоено полностью, без пробелов, умения сформированы, все	-тестирование;
теоретической	предусмотренные программой учебные	-самоконтроль;
механики, законы	задания выполнены, качество их выполнения оценено высоко.	-взаимопроверка.
равновесия и	«Хорошо» - теоретическое содержание	Экспертная оценка
перемещения тел;	курса освоено полностью, без пробелов, некоторые умения сформированы	по результатам
методики	недостаточно, все предусмотренные	наблюдения за
выполнения	программой учебные задания выполнены, некоторые виды заданий выполнены с	деятельностью
основных расчетов	ошибками.	студентов в
по теоретической	«Удовлетворительно» - теоретическое содержание курса освоено частично, но	процессе освоения
механики,	пробелы не носят существенного	учебной
сопротивлению	характера, необходимые умения работы с освоенным материалом в основном	дисциплины.
материалов и	сформированы, большинство	
деталям машин;	предусмотренных программой обучения	
	учебных заданий выполнено, некоторые из	
основы	выполненных заданий содержат ошибки. «Неудовлетворительно» - теоретическое	
проектирования	«пеудовлетворительно» - теоретическое содержание курса не освоено, необходимые	
деталей и сборочных	умения не сформированы, выполненные	
_	учебные задания содержат грубые ошибки.	
единиц;		
уметь:		оценка выполнения
производить расчет	«Отлично» - теоретическое содержание	практических
на растяжение и	курса освоено полностью, без пробелов, умения сформированы, все	работ;
сжатие на срез,	предусмотренные программой учебные	-оценка
смятие, кручение и	задания выполнены, качество их выполнения оценено высоко.	выполнения
изгиб;	«Хорошо» - теоретическое содержание	самостоятельной
выбирать детали и	курса освоено полностью, без пробелов, некоторые умения сформированы	работы.
узлы на основе	недостаточно, все предусмотренные	Экспертная оценка
анализа их свойств	программой учебные задания выполнены,	по результатам

для конкретного	некоторые виды заданий выполнены с	наблюдения за
применения	ошибками. «Удовлетворительно» - теоретическое	деятельностью
	содержание курса освоено частично, но	студентов в
	пробелы не носят существенного характера, необходимые умения работы с	процессе освоения
	освоенным материалом в основном	учебной
	сформированы, большинство предусмотренных программой обучения	дисциплины
	учебных заданий выполнено, некоторые из	
	выполненных заданий содержат ошибки.	
	«Неудовлетворительно» - теоретическое	
	содержание курса не освоено, необходимые	
	умения не сформированы, выполненные	
	учебные задания содержат грубые ошибки.	

ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЁННЫХ В РАБОЧУЮ ПРОГРАММУ

№ изменения, дата внесения, № страницы с изменением		
Было	Стало	
Основание:		
Подпись лица, внесшего изменения		