ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ЧЕРЕМХОВСКИЙ ГОРНОТЕХНИЧЕСКИЙ КОЛЛЕДЖ ИМ. М.И. ЩАДОВА»

PACCMOTPEHO

на заседании ЦК «Горных дисциплин» Протокол №6 «04» февраля 2025 г. Председатель: Жук Н.А.

Утверждаю:

Зам. директора О.В. Папанова «26» мая 2025 г.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по практическим занятиям студентов

учебной дисциплины *ОП.03 Техническая механика*

21.02.18 Обогащение полезных ископаемых

Разработал: Пилипченко H. A.

СОДЕРЖАНИЕ

		CIP
1.	ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
2.	ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ	5
3.	СОДЕРЖАНИЕ ПРАКТИЧЕСКИХ ЗАНЯТИЙ	5
4.	ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ	49
	ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЕННЫХ В	51
	МЕТОДИЧЕСКИЕ УКАЗАНИЯ	

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Методические указания по практическим занятиям учебной дисциплины «**Техническая механика**» составлены в соответствии с учебным планом и рабочей программы дисциплины по специальности 21.02.18 Обогащение полезных ископаемых.

Цель проведения практических занятий: формирование практических умений, необходимых в последующей профессиональной и учебной деятельности.

Методические указания практических занятий являются частью учебно-методического комплекса по учебной дисциплине и содержат:

- тему занятия (согласно тематическому плану учебной дисциплины);
- цель:
- оборудование (материалы, программное обеспечение, оснащение, раздаточный материал и др.);
- методические указания (изучить краткий теоретический материал по теме практического занятия);
 - ход выполнения;
 - форму отчета.

В результате выполнения полного объема заданий практических занятий студент должен уметь:

БАЗОВАЯ ЧАСТЬ

В результате освоения дисциплины студент должен уметь:

- оформлять технологическую и техническую документацию в соответствии с действующей нормативной базой;
- приводить несистемные величины измерений в соответствие с действующими стандартами и международной системой единиц СИ;
 - определять напряжения в конструкционных элементах;
 - определять передаточное отношение;
- проводить расчет и проектировать детали и сборочные единицы общего назначения;
- проводить сборочно-разборочные работы в соответствии с характером соединений деталей и сборочных единиц;
 - производить расчеты на сжатие, срез и смятие;
- производить расчеты элементов конструкций на прочность, жесткость и устойчивость;
 - собирать конструкции из деталей по чертежам и схемам;
 - читать кинематические схемы;

В результате освоения учебной дисциплины студент должен знать:

- основные понятия и определения метрологии, стандартизации, сертификации;
- терминологию и единицы измерения величин в соответствии с действующими стандартами и международной системой единиц СИ;
 - виды движений и преобразующие движения механизмы;
 - виды износа и деформаций деталей и узлов;

- виды передач; их устройство, назначение, преимущества и недостатки, условные обозначения на схемах;
- кинематику механизмов, соединения деталей машин, механические передачи, виды и устройство передач;
- методику расчета конструкций на прочность, жесткость и устойчивость при различных видах деформации;
 - методику расчета на сжатие, срез и смятие;
 - назначение и классификацию подшипников;
 - характер соединения основных сборочных единиц и деталей;
 - основные типы смазочных устройств;
 - типы, назначение, устройство редукторов;
 - трение, его виды, роль трения в технике;
- устройство и назначение инструментов и контрольно-измерительных приборов, используемых при техническом обслуживании и ремонте оборудования.

ВАРИАТИВНАЯ ЧАСТЬ

В результате освоения учебной дисциплины студент должен знать:

-методику расчета конструкций на растяжение и сжатие, кручение и изгиб;

При проведении практических работ применяются следующие технологии и методы обучения:

ТЕХНОЛОГИИ	МЕТОДЫ
Обучение в сотрудничестве	Словесные
Проблемно-развивающее	Наглядные
обучение	
Развивающее обучение	Практические
Технология учебно-поисковой	
деятельности	

Оценка выполнения заданий практических (лабораторных) занятий

«Отлично» - теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко.

«Хорошо» - теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками.

«Удовлетворительно» - теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки.

«**Неудовлетворительно**» - теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.

В соответствии с учебным планом и рабочей программы дисциплины «**Техническая механика**» на практические занятия отводится <u>44</u> часов.

2 ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

№ п/п	Тема практических занятий	Кол-во часов
1.	№ 1 Перевод внесистемных единиц в международную систему единиц физических величин.	2
2.	№ 2 Категории и виды стандартов.	2
3.	№ 3 Основные положения Закона РФ «О техническом регулировании»	2
4.	№ 4. Определение усилий и подбор элементов плоской системы сходящихся сил	2
5.	№ 5. Определение усилий и подбор элементов плоской системы параллельных сил	2
6.	№ 6. Определение усилий в элементах пространственной системы сил	2
7.	№ 7. Определение центра тяжести плоских фигур	2
8.	№ 8. Определение скоростей и ускорений для поступательного движения.	2
9.	№ 9. Определение линейных и угловых скоростей, ускорений для вращательного движения	2
10.	№ 10. Применение принципа Даламбера к решению задач на прямолинейное движение точки	2
11.	№ 11. Расчет прочности сжатых и растянутых элементов по предельному состоянию.	2
12.	№ 12. Построение эпюр продольных сил и напряжений	2
13.	№ 13. Расчет разъемных и не разъемных соединений на срез и смятие	2
14.	№ 14. Определение главных моментов составных конструкций.	2
15.	№ 15. Расчет валов и осей на кручение. Построение эпюр крутящих моментов	2
16.	№ 16. Построение эпюр продольных и нормальных напряжений при растяжении и сжатии.	2
17.	№ 17. Построение эпюр поперечных сил и изгибающих моментов	2
18.	№ 18-19. Расчет и подбор сечения балки на поперечный изгиб	4
19.	№ 20. Расчет на устойчивость сжатых стержней.	2
20.	№ 21. Расчет на контактную усталость и усталость при изгибе зубьев зубчатых колес	2
21.	№ 22. Подбор элементов передач по видам	2

3 СОДЕРЖАНИЕ ПРАКТИЧЕСКИХ ЗАНЯТИЙ Практическое занятие № 1

Тема: Перевод внесистемных единиц в международную систему единиц физических величин

Цель: овладеть навыками перевода внесистемных единиц измерения физических величин в единицы Международной системы (СИ).

Ознакомиться с некоторыми национальными внесистемными единицами измерения, научиться пересчитывать внесистемные единицы в единицы СИ.

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задача 1.

При заключении договора купли-продажи на поставку партии импортных товаров сторонами не было оговорено, в каких единицах измерения будет определен размер товарной партии. Каждая из договорных сторон имела в виду свои национальные единицы измерения. Рассчитайте возможные убытки одной из договаривающихся сторон. Дайте рекомендации по предотвращению убытков одной из сторон. Объясните возможные причины допущенных ошибок при заключении договора.

Перечень товаров и елиниц их измерения

1.0	TT				
$N_{\underline{0}}$	Наименование	Единицы	Pa	змер	Цена за ед.
	товара	измерения	па	ртии	измерения,
			импортера	экспортера	y.e.
1.	Масло сливочное	2000	Килограмм	торговый фунт	5
2.	Пшеница	600	Центнер	короткий	15
				центнер	
3.		1000	центнер	короткий	40
			(англ)	центнер	
4.	Мясо	100	Тонна	Тонна англ.	1600
5.	Мука	200	Тонна англ.	Короткая	200
				тонна	
6.	Медикаменты	10000шт.	2	2 торговых	1
			аптекарских	унции	
			унции (масса	(масса 1-й упа-	
			1-й	ковки)	
			упаковки)	,	
7.	Нефть	200	сухой	нефтяной	200
			баррель	баррель	
8.	Пиво	10000	бушель англ.	бушель США	300
9.	Ткани х/б	100000	метр	ярд	2
10.	Ткани шерстяные	200000	метр	фут	15

Задача 2.

Три транснациональные компании предлагают услуги по морским перевозкам грузов. С какой фирмой выгоднее заключить договор на перевозку, если

цены на транспортные услуги у всех компаний одинаковы, но у первой компании стоимость перевозки груза указана за 1 км, у второй — за 1 милю сухопутную, у третьей — за 1 милю морскую. Рассчитайте стоимость транспортных услуг каждой компании, если груз нужно перевезти на расстояние 1000 км, а стоимость перевозки на единицу расстояниясоставляет

Таблица 1

5 у.е. Проранжируйте стоимость транспортных услуг по шкале отношений в возрастающем порядке.

Задача 3.

При заключении контракта на поставку мороженого мяса в особых условиях было указано, что температура его хранения должна быть не выше -10° F (градус Фаренгейта). Фактически мясо хранилось при -6° C.

Может ли фирма-получатель предъявить претензии поставщику, если при хранении в течение сроков годности качество мяса ухудшилось, и оно признано непригодным для пищевых целей?

Пересчет температуры в град. Цельсия на град. Фаренгейта производится по формуле:

$$t_c = \frac{5}{9} (t_f - 32)$$

Контрольные вопросы:

- 1. Какие единицы измерения входят в Международную систему (СИ)?
- 2. Какие последствия могут быть при отсутствии или неправильном указании единиц измерения при заключении контрактов?
- 3. Что такое физическая величина?
- 4. Какие физические величины вам известны?
- 5. Какие свойства и характеристики определяют физические величины?

Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 2

Тема: Категории и виды стандартов

Цель: изучить категории и виды стандартов, сравнить объекты стандартизации и структурные элементы стандартов нескольких видов.

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Выполнение работы:

- 1. Изучить лекционный материал по данной теме.
- **2.** Сравнить несколько стандартов, определить их категории и виды. Результаты занести в таблицу.
- **3.** Сравнить структуру стандартов разных видов. Результаты занести в таблицу.

Методические рекомендации к выполнению работы:

Выделяют следующие категории стандартов:

- международные;
- региональные;
- национальные;
- стандарт организации;
- межгосударственные стандарты.

Виды стандартов:

- основополагающий стандарт;
- стандарт на методы испытаний (контроля);
- стандарт на продукцию (услугу);

- стандарт на процесс.

Структурные элементы стандарта – это совокупность элементов построения, изложения, оформления, содержания и обозначения стандартов. В общем случае стандарты содержат следующие структурные элементы:

- титульный лист (обязательный элемент);
- предисловие (обязательный элемент);
- сведения о праве собственности на данный стандарт (обязательный элемент);
 - содержание (при необходимости);
 - наименование (обязательный элемент);
 - введение (при необходимости);
 - область применения (обязательный элемент);
 - нормативные ссылки (при наличии);
 - определения или термины и определения (при наличии);
- обозначения и сокращения, используемые в тексте стандарта (при наличии);
 - требования (главный и обязательный элемент);
 - приложения обязательные и рекомендуемые (при наличии);
- библиографические данные, т.е. информационные сведения о документах,

использованных при разработке данного стандарта (при наличии);

- сведения об отнесении стандарта к определенной классификационной группировке Универсальной десятичной классификации (УДК) печатно-книжной продукции (обязательный элемент);
 - обозначение данного стандарта (обязательный элемент).

Общие требования к построению, изложению, оформлению, содержанию и обозначению стандартов, принятых на территории РФ, установлены в ГОСТ Р 1.5-92 и ГОСТ 1.5-93. Требования ГОСТ могут быть обязательные, либо рекомендательные.

Таблица 1

№ стандарта Название стандарта Вид Категория

Таблица 2

№ стандарта Название стандарта Объект стандартизации Структурные элементы

Контрольные вопросы.

- 1. Перечислите виды стандартов.
- 2. Перечислите категории стандартов.
- 3. Какие структурные элементы стандартов являются обязательными?
- 4. Что включают стандарты на процессы?
- 5. Какие существуют виды технических регламентов?

Форма отчета: конспект с выполненными заданиями.

Практическое занятие №

Тема: Основные положения закона РФ «О техническом регулировании» **Цель:** изучение основ технического регулирования в Российской Федерации.

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

В результате изучения темы студент должен знать:

- -основные положения технического регулирования;
- -основные определения в области технического регулирования;
- -принципы технического регулирования;
- -объекты технического регулирования;
- -технический регламент и цели его принятия;
- -нормативные документы стандартизации.

Порядок проведения практического занятия

- 1. Академическую группу студентов разделить на пять команд (подгрупп). В каждой команде выбрать руководителя команды.
- 2. Каждой команде изучить и доложить в группе содержание одного раздела ФЗ «О техническом регулировании». При подготовке вопроса составить план доклада. Структуру доклада желательно представить в виде блок-схемы, а содержание доклада сопровождать конкретными примерами. Распределяет тематику разделов по командам Совет группы, состоящий из руководителей команд. Текст закона «О техническом регулировании» у преподавателя.

Рекомендуемые разделы ФЗ «О техническом регулировании»:

Глава 1. Общие положения.

При изучении данного вопроса упор следует сделать на понятие технического регулирования, основные определения, связанные с техническим регулированием, и принципы технического регулирования.

Глава 2. Технические регламенты.

Привести цели принятия технических регламентов, содержание и применение технических регламентов, виды технических регламентов.

Глава 3. Стандартизация.

Указать цели и принципы стандартизации, перечислить и охарактеризовать документы в области стандартизации, перечислить функции Национального органа $P\Phi$ по стандартизации и технических комитетов по стандартизации.

Глава 4. Подтверждение соответствия.

Привести цели и принципы подтверждения соответствия, раскрыть понятия добровольного и обязательного характера подтверждения соответствия, рассказать про сертификацию, декларирование и знак обращения на рынке.

Глава 5. Государственный контроль (надзор) за соблюдением требований технических регламентов.

Указать органы государственного контроля (надзора) за соблюдением требований технических регламентов, объекты государственного контроля (надзора), полномочия и ответственность органов государственного контроля (надзора).

После изучения каждой команде сделать доклад по своему вопросу.

Докладывают один-два представителя каждой команды. После каждого доклада проводится обсуждение содержания основных разделов ФЗ «О техническом регулировании». В обсуждении участвуют студенты всей группы.

Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 4

Тема: Определение усилий и подбор элементов плоской системы сходящихся сил

Цель: уметь определять величины и направления действия уравновешивающих сил графическим и аналитическим способами.

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание:

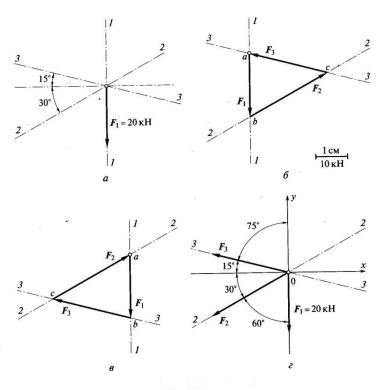
1. Повторить тему «Плоская система сходящихся сил».

2. Выпишите данные для вашего варианта (согласно нумерации в

журнале).					
№	$F_{I_{i}}$	$N_{\underline{0}}$	$F_{I, \mathrm{H}}$	№	$F_{I, \mathrm{H}}$
варианта	Н	варианта		варианта	
1	22	11	32	21	27
2	23	12	33	22	28
3	24	13	34	23	29
4	25	14	35	24	30
5	26	15	36	25	31
6	27	16	22	26	32
7	28	17	23	27	33
8	29	18	24	28	34
9	30	19	25	29	35
10	31	20	26	30	36

^{3.} Рассмотрите пример решения.

Пример решения: найти величины и направления действия уравновешивающих сил F_2 и F_3 графическим и аналитическим способами, если заданы величина силы $F_1 = 20$ кН и линии действия сил F_2 и F_3 (рис. а).


Решение графическим способом.

Принимаем масштаб сил: в 1 см – 10 кН.

Из произвольной точки а откладываем в масштабе известную силу F_1 , длина вектора которой равна длине отрезка ab = 2 см (рис. б).

Через начало и конец вектора силы F_1 , т.е. через точки а и b, проводим линии, параллельные линиям действия сил F_2 и F_3 , так, чтобы они пересекались в одной точке с. При этом силы F_2 и F_3 могут оказаться как справа от силы F_1 (см. рис. б), так и слева от нее (рис. в). Это не является ошибкой построения, поскольку оба полученных силовых треугольника являются двумя частями параллелограмма. Но, все же, правильнее, когда при обходе треугольника номера сил идут в нарастающем порядке, т.е. вариант F_1 F_2 F_3 предпочтительнее, чем второй вариант. Силы F_2 и F_3 являются уравновешивающими силу F_1 .

Измеряем отрезки bc и ca: bc =2, 8 см, ca = 2,5 см. Так как 1 см соответствует 10 кH, получаем $F_2 = 28$ кH, $F_3 = 25$ кH.

a — заданная схема действия сил; δ , δ — варианты построения силового треугольника; ϵ — схема сил для аналитического решения

Расставляем

стрелки на отрезках вс и Из условия равновесия все стрелки быть должны направлены одну В обходе сторону при треугольника. Поскольку направление силы задано (вниз), остальные силы должны быть направлены так, как показано на рис. б, в, при этом конец вектора силы будет совпадать с началом вектора силы F_1 .

Ответ: $F_2 = 28 \text{ кH}$, $F_3 = 25 \text{ кH}$; направления этих сил показаны на силовом треугольнике.

Решение аналитическим способом.

Проводим оси координат О х и О у, традиционно направляя первую из них горизонтально, а вторую — вертикально. Силы направляем из начала координат по заданным линиям действия 3-3 и 2-2. Направление выбираем произвольно (допустим, влево — рис. г). Проставляем углы между направлениями всех сил и координатными осями.

Составляем уравнения:

 $-F_2 \cos 30^{\circ} - F_3 \cos 15^{\circ} = 0$

 $-F_{1}-F_{2}\cos 60^{\circ}+F_{3}\cos 75^{\circ}=0$

Из первого уравнения получаем выражение для $F_{2:}$

 $F_2 = -F_3 \cos 15^{\circ} / \cos 30^{\circ}$

Подставляем выражение для F_2 во второе уравнение:

 $-F_1 + F_3 \cos 15^{\circ} / \cos 30^{\circ} \times \cos 60^{\circ} + F_3 \cos 75^{\circ} = 0;$

 $F_3 = F_1/(\cos 15^\circ : \cos 30^\circ \times \cos 60^\circ + \cos 75^\circ) = 20/(0.966: 0.866 \times 0.5 + 0.259) = 24.48 \text{ kH}$

Определив F_3 , находим F_2 :

 F_2 = $-F_3 cos 15$ °/ cos 30° = 24, 48× 0,966: 0,866 = -27,31 κH

Ответ: $F_2 = 27$, 31 кH, эта сила направлена в сторону, противоположную показанной на рис, о чем говорит знак «минус» перед числовым значением; $F_3 = 24,48$ кH, сила направлена так же, как показано на

рис. г, поскольку числовое значение получилось со знаком «плюс», который опущен.

- 4. Перечертите рисунок с соблюдением масштаба.
- 5. Решите задачу
- 6. Сделайте вывод.

Контрольные вопросы:

- 1. Как найти равнодействующую трех сил?
- 2. Что можно сказать о действии сил, когда их равнодействующая равна нулю?
- 3. Опишите общий порядок решения задач о равновесии трех сил графическим способом.
- 4. Каков общий порядок решения тех же задач аналитическим способом?
- 5. Какой из указанных способов более точен?
- 6. Приведите примеры частных случаев трех сил.

Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 5

Тема: Определение усилий и подбор элементов плоской системы параллельных сил

Цель: знать определения момента пары сил и момента относительно точки, уметь определять знак момента.

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание:

- 1. Повторить тему «Момент силы относительно точки. Пара сил».
- 2. Выпишите данные для Вашего варианта (согласно нумерации в журнале).

No No		E	E	E	1.1			_			1.
№	F_I	F_2	F_3	F_4	M	a_1	a_2	a_3	a_4	a_5	h_4
варианта	кН	кН	кН	кН	кН м	М	м	М	М	М	М
1	20	10	30	40	15	1	2	3	4	5	0,5
2	15	20	10	30	40	5	1	2	3	4	0,8
3	40	15	20	10	30	4	5	1	2	3	0,7
4	30	40	15	20	10	3	4	5	1	2	0,6
5	20	30	40	15	20	2	3	4	5	1	0,3
6	10	20	30	40	15	1	2	3	4	5	0,4
7	50	10	20	30	40	5	1	2	3	4	0,5
8	40	50	10	20	30	4	5	1	2	3	0,6
9	30	40	50	10	20	3	4	5	1	2	0,3
10	25	30	40	50	10	2	3	4	5	1	0,4
11	10	25	30	40	50	1	2	3	4	5	0,5
12	20	10	25	30	40	2	1	2	3	4	0,6
13	35	20	10	25	30	3	2	1	2	3	0,7
14	40	35	20	10	25	4	3	2	1	2	0,8
15	30	40	35	20	10	5	4	3	2	1	0,3
16	50	30	40	35	20	1	5	4	3	2	0,4
17	15	50	30	40	35	2	1	5	4	3	0,5
18	20	15	50	30	40	3	2	1	5	4	0,6
19	30	20	15	50	30	4	3	2	1	5	0,7

20	40	30	20	15	50	5	4	3	2	1	0,8
21	45	40	30	20	15	1	5	4	3	2	0,3
22	50	45	40	30	20	2	1	5	4	3	0,4
23	10	50	45	40	30	3	2	1	5	4	0,5
24	20	10	50	45	40	4	3	2	1	5	0,6
25	30	20	10	50	45	5	4	3	2	1	0,7

1. Рассмотрите пример решения.

 $F_1 = 10 \text{ kH}$

 $F_2 = 15 \text{ kH}$

 $F_3 = 20 \text{ kH}$

 $F_4 = 25 \text{ kH}$

M = 15 kHm

 $a_1 = 2 M$

 $a_2 = 3 M$

 $a_3 = 4 M$

 $a_4 = 5 M$

 $a_5 = 6 \text{ M}$

 $h_4 = 0.2 \text{ M}$

Находим плечи $h_1 h_2 h_3$

 $h_1 = a_1 \sin 30 = 2 \cdot 0.5 = 1 \text{ M}$

 $h_2 = a_2 \sin 60 = 3 \cdot 0.866 = 2.598 \text{ M}$

 $h_3 = a_3 = 4 M$

Находим сумму моментов относительно точки О:

$$\sum M_o = -F_1 h_1 + F_2 h_2 - F_3 h_3 - F_4 h_4 + M = -10 \cdot 1 + 15 \cdot 2,598 - 20 \cdot 4 - 25 \cdot 0, 2 + 15 = -41,03 \text{ kHm}.$$

- 4. Перечертите рисунок.
- 5. Определите сумму моментов всех сил относительно точки О.
- 6. Сделайте вывод.

Контрольные вопросы:

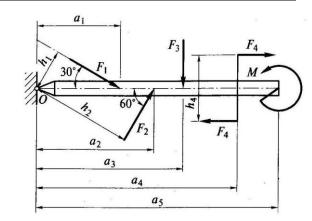
- 1. Напишите формулу для определения момента силы относительно какойлибо точки тела.
- 2. Как определяется знак момента силы относительно какой-либо точки?
- 3. В чем сходство и отличие вращательных воздействий, оказываемых на тело силой и парой сил?

Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 6

Тема: Определение усилий в элементах пространственной системы сил

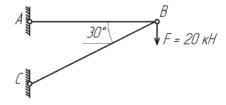
Цель: научиться определять усилия в стержнях, вызванных действием груза, составлять уравнения равновесия для пространственной системы сходящихся сил.


Оборудование: раздаточный материал

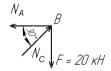
Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

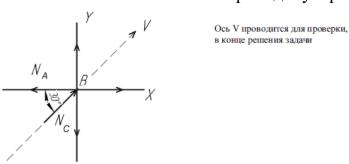
Задание:


Указания к выполнению работы:

- 1. Повторить по учебнику тему «Пространственная система сил».
- 2.Выпишите данные для вашего варианта (согласно нумерации в журнале).


Пример решения задачи:

Определить усилия в стержнях.



Порядок решения:

- 1.Выделяем узел (или точку) равновесие которого будем рассматривать. (В данном случае точку В).
 - 2.Заменяем связи, действующие на точку, силами реакции.

3.Выбираем направление координатных осей. В принципе их можно провести как угодно. Но желательно, чтобы как можно больше число неизвестных сил было к этим осям перпендикулярно.

4. Составляем для данной задачи уравнения равновесия и, решая их, находим неизвестные силы.

$$\begin{cases} \sum_{k=1}^{n} X_{K} = 0 & -N_{A} + N_{C} \times \cos 30^{\circ} = 0 \\ \sum_{k=1}^{n} Y_{K} = 0 & -F + N_{C} \times \sin 30^{\circ} = 0 \end{cases}$$

5.Выражаем Nc из второго уравнения

$$-F + N_C \times \sin 30^\circ = 0$$

 $N_C = \frac{F}{\sin 30^\circ} = \frac{20}{0.5} = 40\kappa H$

Т.к. стало известно, можно решить первое уравнение.

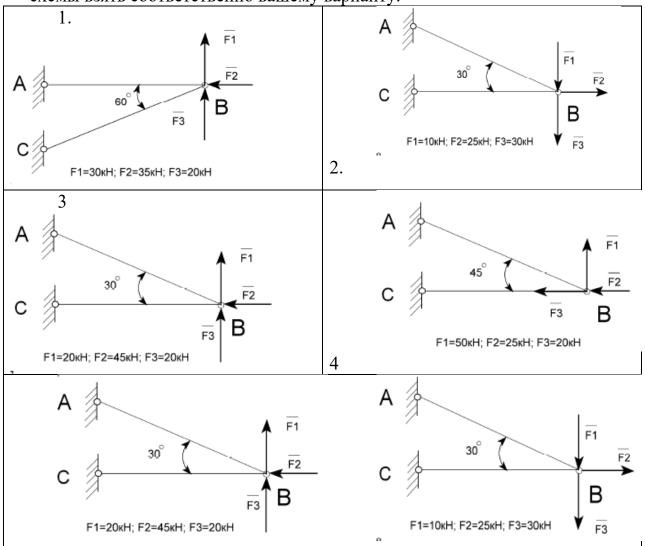
$$-N_A + N_C \times \cos 30^\circ = 0$$

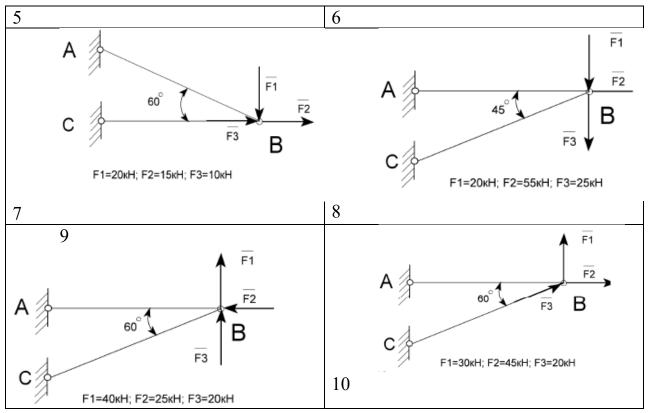
 $N_A = N_C \times \cos 30^\circ$
 $N_A = 40 \times \cos 30^\circ$
 $N_A = 40 \times 0,866 = 34,6\kappa H$

6.Для проверки правильности проведённого решения проводим произвольную ось V, не совпадающую с X и Y и составляем для нее уравнение равновесия.

Если после подставленных найденых величин, уравнение равно нулю, то задача решена верно.

$$\sum_{k=1}^{n} V_{K} = 0$$


$$-N_{A} \times \cos 30^{\circ} - F \times \sin 30^{\circ} + N_{C} = 0$$


$$-34,6 \times 0,866 - 20 \times 0,5 + 40 = -30 - 10 + 40 = 0$$

Варианты заданий для контрольной работы.

Определить усилия в стержнях, изображенных на рисунке. Номер

схемы взять соответственно вашему варианту.

- 4. Решите свой вариант.
- 5.Ответьте на вопросы.
- 6.Сделайте вывод.

Контрольные вопросы:

- 1. Что называют главным вектором системы?
- 2. Чему равен главный момент системы?
- 3. Чему равна равнодействующая произвольной плоской системы сил?
- 4. Какая система сил называется пространственной?

Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 7

Тема: Определение центра тяжести плоских фигур

Цель: обобщение, систематизация, углубление, закрепление полученных теоретических знаний для определения центра тяжести плоских фигур;

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание:

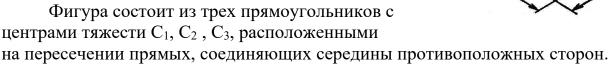
1. Повторить по учебнику тему «Центр тяжести».

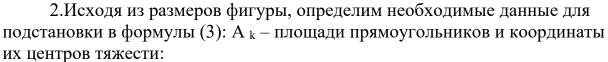
2. Выпишите данные для вашего варианта (согласно нумерации в

журнале).

My piras.	10 <i>)</i> .																
$N_{\underline{0}}$	X1,	X2,	y,	$z_{1,}$	Z3,	$N_{\underline{0}}$	X 1,	X2,	y,	$z_{1,}$	Z 3,	$N_{\underline{0}}$	X1,	X2,	y,	Z1,	Z3,
вариант	MM	MM	MM	MM	MM	варианта	MM	MM	MM	MM	MM	варианта	MM	MM	MM	MM	MM
a																	
1	20	30	70	40	10	11	60	70	110	80	50	21	40	50	90	60	30
2	40	50	90	60	30	12	50	60	100	70	40	22	60	70	110	80	50
3	60	70	110	80	50	13	20	30	70	40	10	23	50	60	100	70	40
4	50	60	100	70	40	14	40	50	90	60	30	24	20	30	70	40	10
5	20	30	70	40	10	15	60	70	110	80	50	25	40	50	90	60	30

6	40	50	90	60	30	16	50	60	100	70	40	26	60	70	110	80	50
7	60	70	110	80	50	17	20	30	70	40	10	27	50	60	100	70	40
8	50	60	100	70	40	18	40	50	90	60	30	28	20	30	70	40	10
9	20	30	70	40	10	19	60	70	110	80	50	29	40	50	90	60	30
10	40	50	90	60	30	20	50	60	100	70	40	30	60	70	110	80	50


3. Рассмотрите пример решения.


Пример.

Определить положение центра тяжести фигуры, составленной из трех тонких плоских пластинок прямоугольной формы, пересекающихся друг с другом под прямыми углами; размеры — в мм.

Решение.

1.Поместим начало координат в вершине трехгранного угла и расположим оси координат вдоль линий пересечения пластинок.

$$A_1 = 3 \cdot 5 = 15 \text{ cm}^2$$
; $C_1 (1, 5; 0; 2, 5)$; $A_2 = 4 \cdot 8 = 32 \text{ cm}^2$; $C_2 (2; 4; 0)$; $A_3 = 8 \cdot 2 = 16 \text{ cm}^2$; $C_3 (0; 4; 1)$.

3.Подставим эти данные в формулы (4) и вычислим искомые координаты центра тяжести фигуры:

$$x_c = (15 \cdot 1,5 + 32 \cdot 2 + 16 \cdot 0) / (15 + 32 + 16) = 1, 37 \text{ cm} = 13,7 \text{ мм}$$
 $y_c = (15 \cdot 0 + 32 \cdot 4 + 16 \cdot 4) / (15 + 32 + 16) = 3,04 \text{ cm} = 30,4 \text{ мм}$ $z_c = (15 \cdot 2,5 + 32 \cdot 0 + 16 \cdot 1) / (15 + 32 + 16) = 0,85 \text{ cm} = 8,5 \text{ мм}$ Центр тяжести фигуры расположен в точке $C(13,7;30,4;8,5)$.

- 4. Решите свой вариант.
- 5. Ответьте на вопросы.
- 6. Сделайте вывод.

Контрольные вопросы:

- 1. Дайте определение центра тяжести тела.
- 2. Чему равен статический момент площади относительно оси абсцисс?
- 3. В каких единицах измеряется статический момент плоской фигуры?
- 4. Чему равен статический момент плоской фигуры относительно центральной оси?

Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 8

Тема: Определение скоростей и ускорений для поступательного движения. **Цель**: обобщение, систематизация, углубление, закрепление полученных теоретических знаний;

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание:

1. Повторить по учебнику тему «Кинематика точки».

2. Выпишите данные для вашего варианта (согласно нумерации в

журнале).

221.5 P 22002 2	(
№	S,	$\mathcal{V}_{A,}$	$v_{B, \bullet}$	№	S,	\mathcal{V}_A ,	V_B ,,	№	S,	V_A ,,	<i>V B</i> ,
варианта	KM	км/ч	км./ч	варианта	KM	км/ч	км/ч	варианта	KM	км/ч	км/ч
1	110	30	20,4	11	130	34	24,8	21	110	30	20,4
2	120	32	22,6	12	140	36	26,2	22	120	32	22,6
3	130	34	24,8	13	110	30	20,4	23	130	34	24,8
4	140	36	26 2	14	120	32	22,6	24	140	36	26,2
5	110	30	20,4	15	130	34	24,8	25	110	30	20,4
6	120	32	22,6	16	140	36	26,2	26	120	32	22,6
7	130	34	24,8	17	110	30	20,4	27	130	34	24,8
8	140	36	26,2	18	120	32	22,6	28	140	36	26,2
9	110	30	20,4	19	130	34	24,8	29	110	30	20,4
10	120	32	22,6	20	140	36	26,2	30	120	32	22,6

3. Рассмотрите пример решения.

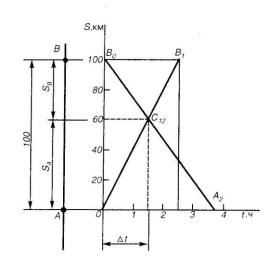
Из двух пунктов A и B прямолинейного шоссе, находящихся один от другого на расстоянии 100 км, одновременно выезжают навстречу друг другу два велосипедиста и движутся с постоянными скоростями. Велосипедист, выезжающий из A, имеет скорость v_A , а велосипедист, выезжающий из B, — скорость v_B , = 26,6 км /ч. Определить, за какое время каждый из них проедет расстояние 100 км. Через сколько часов и где они встретятся?

Решение.

1. Находим время, затраченное первым велосипедистом на проезд от точки A до B:

$$t_{AB} = S_{AB} / v_A = 100 / 40 = 2,5$$
 ч

2. Находим время, затраченное вторым велосипедистом на проезд от точки B до A:


$$t_{BA} = S_{BA} / v_B = 100 / 26,6 = 3,75$$
 ч.

3. Время и место встречи велосипедистов наиболее просто определить графически. Расстояние между пунктами A и B, равное100 км, изобразим на оси ординат отрезком в 50 мм (рис.202), т.е. в масштабе $\mu_S = 2$ км /мм (100 км = μ_S · 50 мм и ... $\mu_S = 100$ км / 50 км = 2 км /мм).

По оси абсцисс отложим время в масштабе $\mu_t=0,1$ ч /мм (4 часа изображены отрезком 40 мм, поэтому 4 ч = $\mu_t \cdot 40$ мм и μ_t = 4 ч / 40 мм = 0,1 ч /мм)

Первый велосипедист расстояние от A до B проезжает за 2,5 ч. Его перемещение изображается на графике прямой OB_I .

Второй велосипедист расстояние от B до A проезжает за 3,75 ч и его

перемещение изображается на графике прямой $B_0 A_2$

Точка C_{12} пересечения обоих графиков указывает место и время встречи.

Встреча происходит на расстоянии $S_A = 60$ км от пункта A (или на расстоянии.

 $S_B = 40$ км от пункта B) через $\Delta t = 1,5$ ч после начала движения велосипедистов.

Если вместо графического решения применить аналитическое, то можно рассуждать таким образом.

Допустим, что место встречи происходит на расстоянии S от пункта A, а время до встречи Δt , считая от начала движения. Тогда уравнение движения первого велосипедиста примет вид

 $S = v_A \cdot \Delta t$ и уравнение движения второго велосипедиста $S = S_{\theta} - v_B \cdot \Delta t$ где $S_{\theta} = 100$ км — расстояние от местонахождения второго велосипедиста до пункта A в момент начала отсчета (при t = 0).

Так как левые части уравнения (1) и (2) равны, то $v_A \cdot \Delta t = S_{\theta} - v_B \cdot \Delta t$.

Отсюда

$$\Delta t = S_0 / (v_A + v_B) = 100 / (40 + 26,6) = 1,5 \text{ ч}.$$

Из уравнения (1) определяем S:

$$S = v_A \cdot \Delta t = 40 \cdot 1,5 = 60 \text{ km}.$$

- 4. Решите свой вариант.
- 5. Ответьте на вопросы.
- 6. Сделайте вывод.

Контрольные вопросы:

- 1. Дайте определение кинематики.
- 2. Что называют траекторией?
- 3. В каких единицах измеряется скорость?
- 4. Чему равен модуль средней скорости?
- 5. В каких единицах измеряется ускорение?

Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 9

Тема: Определение линейных и угловых скоростей, ускорений для вращательного движения

Цель: уметь решать задачи по определению линейных и угловых скоростей, ускорений для вращательного движения

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание:

Поворот тела относительно неподвижной оси задается углом поворота, выраженным в радианах: ф(рад). Направление положительного поворота связано с направлением оси вращения правилом правого винта.

Угловая скорость равна первой производной угла поворота по времени : $\omega = \phi_t'(pag/c)$

Угловое ускорение равно первой производной угловой скорости по времени или второй производной угла поворота по времени: $\epsilon = \omega_t^{'} = \phi_t^{''}(\text{рад/c}^2)$

Связь линейной и угловой скоростей имеют вид: $v = \omega \cdot R$

Нормальное ускорение частицы равно : $a_{II} = v^2/R$

Тангенциальное ускорение частицы равно: $a_{\tau} = \epsilon \cdot R$

Полное ускорение равно: $a=\sqrt{a_{\tau}^2+a_n^2}$

Основное уравнение динамики вращательного движения относительно неподвижной оси имеет вид: $M = I \cdot \epsilon$

где M- результирующий момент действующих сил, I момент инерции тела относительно оси, ϵ - угловое ускорение.

- 1) Материальная точка массой m=0,2кг вращается по окружности радиусом R=1,2m. Зависимость угла поворота от времени имеет вид φ =(5+2t+3t²) pad. Найти в момент времени t=5с угловую скорость ω , угловое ускорение ε , линейную скорость v, нормальное a_n , тангенциальное a_τ и полное ускорение точки a.
- 2) Однородный диск массой m=4 кг и радиусом R=0,4м вращается относительно оси, проходящей через центр диска и перпендикулярной его плоскости с угловым ускорением ϵ =3рад/ ϵ 2 под действием касательной силы F, приложенной к ободу диска. Найти момент силы M действующий на диск и силу F .
- 3) Однородный стержень массой m=2,4кг о длиной l=1,2м вращается относительно оси перпендикулярной стержню и проходящей через его центр так что Зависимость угла поворота от времени имеет вид $\varphi=(4t+2t^2)pa\partial$. Найти в момент времени t=5c угловую скорость ω , угловое ускорение ε , момент действующей силы M.
- 4) Однородный диск массой m=2кг и радиусом R=0,4м вращается относительно оси перпендикулярной диску и проходящей через его центр так что зависимость угла поворота от времени имеет вид $\phi=(5t+t^2)pa\partial$. Найти в момент времени t=6c угловую скорость ω , угловое ускорение ε , момент действующей силы M.
- 5) Однородный стержень массой m=1,8кг о длиной l=1,2м вращается относительно оси перпендикулярной стержню и проходящей через один из его концов так что зависимость угловой скорости от времени имеет вид $\omega = (4t+0,2t^2)pa\partial/c$. Найти в момент времени t=4c угловое ускорение ε и момент действующей силы M.

Контрольные вопросы:

- 1. Как определяется линейная скорость материальной точки?
- 2. Как определяется угловая скорость материального тела?
- 3. Как определяется ускорения для вращательного движения материального тела?

Форма отчета: конспект с выполненными заданиями.

Практическое занятие №10.

Тема: Применение принципа Даламбера к решению задач на прямолинейное движение точки

Цель: уметь составлять уравнения равновесия для решения задач на прямолинейное движение точки.

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание:

1. Повторить по учебнику тему «Движение несвободной материальной точки».

2. Выпишите данные для вашего варианта (согласно нумерации в

журнале).

<i>Myphane</i>											
$N_{\underline{0}}$	G,	F,	S,	№	G,	F,	S,	№	G,	F,	S,
варианта	кН	кН	M	варианта	кН	кН	M	варианта	кН	кН	M
1	100	20	2	11	150	25	3	21	205	30	2
2	105	25	3	12	155	30	4	22	210	35	3
3	110	30	4	13	160	35	5	23	215	40	4
4	115	35	5	14	165	40	6	24	220	45	5
5	120	40	6	15	170	45	7	25	225	50	6
6	125	45	7	16	175	50	8	26	230	55	7
7	130	50	8	17	180	55	4	27	235	60	8
8	135	55	4	18	185	60	5	28	240	65	4
9	140	60	5	19	190	65	6	29	245	70	5
10	145	65	6	20	195	70	7	30	250	75	6

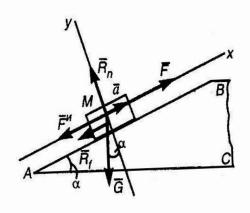
3. Рассмотрите пример решения.

Пример.

По наклонной плоскости AB длиной 4 м и углом подъема $\alpha=15^\circ$ равноускоренно поднимают груз M весом G=200 кH, постоянной силой F=65 кH, направленной параллельно наклонной плоскости. Определить, сколько времени потребуется, чтобы переместить груз на расстояние AB, если коэффициент трения при движении груза по наклонной плоскости f=0.05.

Решение.

1. Изобразим тело M на наклонной плоскости с приложенными κ нему силами G и F, а также силой трения R $_{\rm f}$ и нормальной реакцией R $_{\rm n}$ наклонной плоскости.


Находясь под действием этих сил, тело движется по наклонной плоскости с постоянным ускорением а.

2. Груз перемещается равноускоренно, без начальной скорости.

Время его движения можно определить из уравнения движения

____ S = a t 2 / 2, откуда t = $\sqrt{2}$ S/a, но предварительно необходимо определить ускорение a.

3. Так как груз движется с ускорением, то силы G и F, R $_{\rm f}$ и R $_{\rm n}$, приложенные к нему, не образуют

уравновещенной системы. Приложим к грузу M силу инерции $F_{\text{и}}$ = ma = Ga / g, направив ее в сторону, противоположную ускорению а. Теперь система пяти сил G, F, R $_{\text{f}}$, R $_{\text{n}}$, F $_{\text{и}}$ является уравновещенной.

4. Выберем систему координат, как показано на рис, и спроецируем все силы на оси х и у. Тогда получим два уравнения равновесия:

$$\sum F_{kx} = 0$$
; $F - G \sin \alpha - R_f - F_{\mu} = 0$; (1)

$$\sum F_{ky} = 0$$
; R_n - G cos $\alpha = 0$. (2)

Из уравнения (1)

 F_{μ} = $F - G \sin \alpha - R_{f}$, но сила трения R_{f} = $f R_{n}$.

Нормальную реакцию R _п найдем из уравнения (2)

 $R_n = G \cos \alpha$.

Поэтому

$$F_{H} = F - G \sin \alpha - f G \cos \alpha = F - G(\sin \alpha + f \cos \alpha).$$

Подставим в это уравнение числовые значения

$$F_{\text{H}} = 65 - 200 \text{ (sin } 15^{\text{o}} + 0.05 \text{ cos } 15^{\text{o}}) = 65 - 61.4 = 3.6 \text{ kH}$$

6. Из выражения $F_u = G/g \cdot a$ найдем ускорение а:

$$a = (F_{\text{H}} \cdot g) / G = (3.6 \cdot 9.81) / 200 = 0.18 \text{ m} / c^2$$

7. Подставив значение ускорения а в выражение $t = \sqrt{2}S/2$, найдем время перемещения груза M по всей длине наклонной плоскости:

$$\overline{t} = \sqrt{2} \ \overline{S/a} = \sqrt{2 \cdot 4} / 0.18 = 6.7 \text{ c.}$$

- 4. Решите свой вариант.
- 5. Ответьте на вопросы.
- 6. Сделайте вывод.

Контрольные вопросы:

- 1. Что изучает динамика?
- 2. Какая система отсчета называется инерциальной?
- 3. В чем состоит принцип инерции?
- 4. В чем заключается основной закон динамики?
- 5. Чему равно значение силы тяжести тела?

Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 11

Тема: Расчет прочности сжатых и растянутых элементов по предельному состоянию

Цель (обучающая, развивающая, воспитательная): научиться применять условие прочности при решении задач.

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

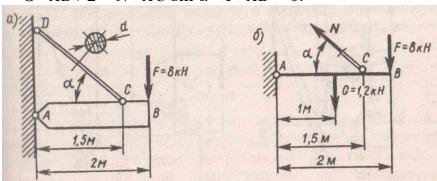
Указания к выполнению работы:

- 1. Повторить по учебнику тему «Растяжение и сжатие».
- 2. Выпишите данные для вашего варианта (согласно нумерации в журнале).

$N_{\underline{o}}$	G,	F,	№	G,	F,	№	G,	F,
варианта	кН	кН	варианта	кН	кН	варианта	кН	кН
1	1,4	10	11	1,6	12	21	1,8	14

2	1,6	12	12	1,8	14	22	2,0	16
3	1,8	14	13	2,0	16	23	2,2	18
4	2,0	16	14	2,2	18	24	1,4	10
5	2,2	18	15	1,4	10	25	1,6	12
6	1,4	10	16	1,6	12	26	1,8	14
7	1,6	12	17	1,8	14	27	2,0	16
8	1,8	14	18	2,0	16	28	2,2	18
9	2,0	16	19	2,2	18	29	1,4	10
10	2,2	18	20	1,4	10	30	1,6	12

3. Рассмотрите пример решения.


Пример.

Однородная жесткая плита AB силой тяжести G=1, 2 кН нагружена силой F=8 кН. Определить из условия прочности диаметр стержня CD, удерживающего плиту в горизонтальном положении; $\alpha=45^{\circ}$, $\sigma=150$ H/мм $\sigma=150$ H/м $\sigma=150$ H/м

Решение.

- 1. Применяя метод сечений, рассечем стержень CD. Отбросив верхнюю его часть вместе с шарниром D, заменим их действие на оставшуюся часть нормальной силой N. Сила тяжести плиты приложена посередине ее длины.
- 2. Для определения силы N составим уравнение моментов относительно точки A всех сил, действующих на плиту:

-
$$G \cdot AB / 2 + N \cdot AC \sin \alpha - F \cdot AB = 0$$
.

Отсюда

$$N = (G \cdot AB / 2 + F \cdot AB) / (AC \sin α) = (1, 2 \cdot 1 + 8 \cdot 2) / (1, 5 \sin 45^{\circ}) = 16.2 \text{ κH}$$

3. Площадь поперечного сечения стержня, обеспечивающую его прочность, находим по расчетной формуле, имея в виду, что N = 16, $2 \cdot 10^3$ H и $[\sigma] = 150$ H/мм 2 .

$$A \ge N/[\sigma] = 16, 2 \cdot 10^3 / 150 = 108 \text{ mm}^2.$$

4. Из формулы площади круга находим диаметр стержня:

$$d = \sqrt{4} A / \pi = \sqrt{4 \cdot 108} / \pi = 11,8 \text{ MM}.$$

Округляя до четного числа, принимаем значение диаметра d = 12 мм.

- 4. Решите свой вариант.
- 5. Ответьте на вопросы.
- 6. Сделайте вывод.

Контрольные вопросы:

- 1. Как нужно нагрузить прямой брус, чтобы он работал только на растяжение (сжатие)?
- 2. Сформулируйте закон Гука. Каков физический смысл модуля продольной упругости?
- 3. Что такое «предельное напряжение» и что такое «расчетное напряжение»?
- 4. Что такое допускаемое напряжение и как оно выбирается в зависимости от свойств материалов?
- 5. Как можно данную статически неопределимую систему превратить в статически неопределимую?

Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 12

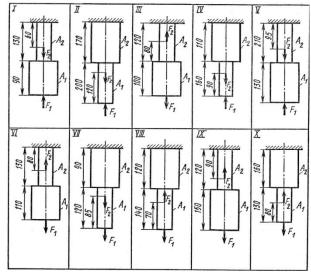
Тема: Построение эпюр продольных сил и напряжений

Цель: обобщение, систематизация, углубление, закрепление полученных теоретических знаний;

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.


Задание:

Двухступенчатый стальной брус, длина ступеней которого указана на схеме, нагружены силами F_1 и F_2 . Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить удлинение

(укорочение) бруса, приняв $E = 2 \cdot 10^5$ МПа

Задача: Числовые значения сил F_1 и F_2 , а так же площадей поперечных сечений ступеней A_1 и A_2 взять из таблицы.

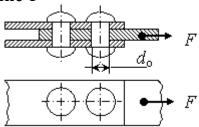
Вариант	F ₁ , кН	F ₂ , кН	A ₁ , cm ²	A ₂ , cm ²
1	22,0	30,6	2,7	2,1
2	16,0	8,0	1,4	0,4
3	3,5	12,0	2,5	1,8
4	15,0	30,0	2,1	1,6
5	10,0	20,0	1,2	0,8
6	12,0	30,0	2,1	2,5
7	14,0	16,0	2,4	2,8
8	6,0	3,0	0,4	0,8
9	10,8	29,0	1,8	2,0
10	3,3	8,0	0,4	0,5

Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 13.

Тема: Расчет разъемных и не разъемных соединений на срез и смятие

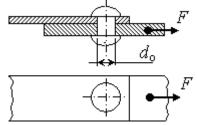
Цель: обобщение, систематизация, углубление, закрепление полученных теоретических знаний; научиться решать практические задачи на тему срез и смятие.


Оборудование: раздаточный материал

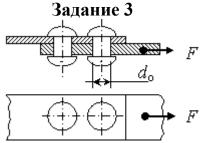
Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание: Расчет неразъемных соединений.

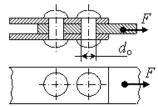

Задание 1

Определить минимальный диаметр заклепки do из расчета на срез и наименьшую толщину соединяемых пластин δ из расчета на смятие для соединения, показанного на рисунке, если на него действует сила F.


Вариант	1	2	3	4	5	6	7	8	9	10
Величина <i>F, кН F, кН</i>	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0

Задание 2

Определить допускаемую силу F из расчета на срез и наименьшую толщину соединяемых пластин δ из расчета на смятие для соединения, показанного на рисунке, если диаметр заклепки do.


Вариант	1	2	3	4	5	6	7	8	9	10
Величина <i>do</i> , <i>мм</i>	12	10	8	6	5	4	3	2,5	2	1,5

Определить минимальный диаметр заклепки do из расчета на срез и наименьшую толщину соединяемых пластин δ из расчета на смятие для соединения, показанного на рисунке, если на него действует сила F.

, ,	,			1 2	,		,	١ .	,	
Вариант	1	2	3	4	5	6	7	8	9	10
Величина <i>F</i> , <i>кН</i>	5,0	4,75	4,5	4,25	4,0	3,75	3,5	3,25	3,0	2,75

Задание 4

Определить допускаемую силу F из расчета на срез и наименьшую толщину соединяемых пластин δ из расчета на смятие для соединения, показанного на рисунке, если диаметр заклепки do.

Вариант	1	2	3	4	5	6	7	8	9	10
Величина	1	2	2.5	2	1.5	12	10	o	6	5
do, mm	4	3	2,3	2	1,5	12	10	0	O	

Расчет разъемных соединений

Пример 5. Определить необходимое количество болтов, обеспечивающих прочность соединения на срез и смятие, если общая толщина соединяемых деталей h=10мм, приложенная нагрузка F=100 kH, допускаемые напряжения $[\sigma_{sw}] = 120 MHa$; $[\tau_{cp}] = 25 MHa$

Рисунок 10.1

Решение:

1. Конструктивно, в соответствии с толщиной соединяемых деталей выбираем диаметр болта из справочной таблицы. Так как толщина

соединяемых деталей по условию задачи 10 мм, из таблицы подберем стандартный болт М10.

2. Условие прочности на срез:

$$\tau = \frac{Q}{A_{cp}} \le \left[\tau_{cp}\right]$$

Из условия прочности на срез определить A_{cp} :

$$A_{\varphi} = \frac{Q}{[\tau_{\varphi}]}$$

Так как Q=F=100kH, то

$$A_{c_F} = \frac{100 \cdot 10^3}{25} = 4000 \text{ MeV}^2$$

- 3. Определить площадь среза одного болта:
- для болта М10 по таблице определить внутренний диаметр резьбы $d_{BHVT} = 8,876 \text{ MM}.$
 - определить площадь сечения болта по внутреннему диаметру

$$A_{cF}^{\dagger} = \frac{\pi d_{sext}^2}{4} = \frac{3.14 \cdot 8.876^2}{4} = 61.84 \text{ mm}^2$$

4. Определить необходимое количество болтов, обеспечивающих прочность соединения на срез:

$$\frac{A_{\rm GF}}{A_{\rm eff}^1} = \frac{4000}{61.84} = 64.68$$

, следовательно для обеспечения прочности на срез потребуется 65 болтов М10.

5. Из условия прочности на смятие:

$$\sigma_{cu} = \frac{F}{A_{cu}} \leq \left[\sigma_{cu}\right]$$

определить Асм:

$$A_{vw} = \frac{F}{[\sigma_{vw}]} = \frac{100 \cdot 10^3}{120} = 833,33 \text{ MeV}^2$$

6. Определить площадь смятия одного болта:

$$A_{\rm cM}^{1} = d_{\rm gapps}^{2} \cdot h = 8.876 \cdot 10 = 88.76 \, \text{M/s}^{2}$$

7. Определить количество болтов, обеспечивающих прочность соединения на смятие:

$$\frac{A_{234}}{4^{\frac{1}{4}}} = \frac{833,33}{88.76} = 9.39$$

 $\frac{A_{\text{см}}}{A_{\text{см}}^{1}} = \frac{833,33}{88,76} = 9,39$, следовательно для обеспечения прочности на смятие потребуется 10 болтов М10.

8. Для обеспечения прочности соединения на срез и смятие потребуется 65 болтов М10. (Следует выбрать наибольшее значение из двух вычисленных).

Варианты заданий:

Вариант	1	2	3	4	5	6	7	8	9	10
Н, мм,	10	15	20	25	30	35	40	45	50	55
F,kH	50	100	60	200	70	30	150	90	110	120

[осм], МПа	240	250	200	210	260	280	290	300	310	320
[τср], МПа	100	150	120	130	140	150	155	145	120	135

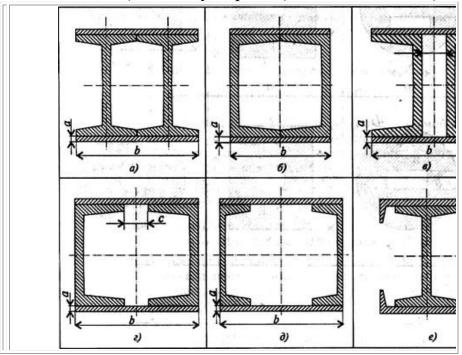
Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 14

Тема: Определение главных моментов составных конструкций.

Цель: обобщение, систематизация, углубление, закрепление полученных

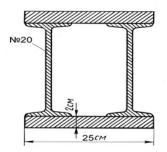
теоретических знаний;


Оборудование: раздаточный материал

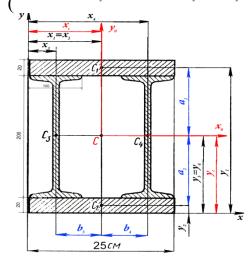
Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание:


Вычислить главные центральные моменты инерции составных сечений. При расчете воспользоваться данными таблицы, выбрав необходимые величины. Геометрические характеристики стали горячекатаной выбрать по ГОСТ 8239-89 (Балки двутавровые) и ГОСТ 8240-89 (Швеллеры)

Параметр					Bapı	иант			
Tupanerp	-1	2	3	4	5	6	7	8	9
№ швеллера	10	12	14	16	18	20	22	24	2
№ двутавра	10	12	14	16	18	20	22	24	27
а, мм	8	10	12	14	16	8	10	12	14
c, MM	10	15	20	25	30	10	15	20	2


Пример выполнения

Вычислить главные центральные моменты инерции плоского сечения.

Решение

- 1. Чертим чертеж в масштабе 1:2
- 2. Проводим оси координат и отмечаем точку О
- 3. Разбиваем сложную фигуру на простые
- I прямоугольник
- II прямоугольник
- III- двутавр
- IV- двутавр
- 4. Вычислением и из таблиц (см. приложение) находим
- для прямоугольника $A_1 = A_2 = 25 \cdot 2 = 50 \text{ cm}^2$
- для двутавра площадь $A_3=A_4=26.8~{\rm cm}^2$, $h=200~{\rm mm},\,b=100~{\rm mm},d=5.2~{\rm mm},t=8.4~{\rm mm},\,\,I_x=1840~{\rm cm}^4,\,\,I_y=115~{\rm cm}^4$)

Площадь всей фигуры

$$A = A_1 + A_2 + A_3 + A_3 = 50 \cdot 2 + 26,8 \cdot 2 = 153,6 \text{ см}^2$$

5. Отмечаем положение центра тяжести и координаты каждой фигуры

C ₁		C ₂				
$x_1 = 25/2 = 12,5$ cm	$x_1 = 25/2 = 12,5$ cm					
$y_1 = 2 + 20 + 2/2 =$	23 см	y ₂ =	2/2 = 1 cm			
C ₃	C ₄					
$x_3 = \frac{10}{2} = 5 \text{ cm}$	x ₄ =	25 - 5 = 2				

$$y_3 = 20/2 + 2 = 12$$
 $y_4 = 20/2 + 2 =$

6. Статический момент относительно оси

$$S_x = \sum Ay = A_1 \cdot y_1 + A_2 \cdot y_2 + A_3 \cdot y_3 + A_4 \cdot y_4$$

= 50 \cdot 23 + 50 \cdot 1 + 26,8 \cdot 12 + 26,8 \cdot 12 = 1843,2 \cdot cm⁴

$$S_y = \sum Ax = A_1 \cdot x_1 + A_2 \cdot x_2 + A_3 \cdot x_3 + A_4 \cdot x_4$$

= 50 \cdot 12,5 + 50 \cdot 12,5 + 26,8 \cdot 5 + 26,8 \cdot 20 = 1920 cm⁴

7. Координата точки С

$$x_c = \frac{S_y}{A} = \frac{1920}{153.6} = 12,5 \text{ cm}$$

$$y_c = \frac{S_x}{A} = \frac{1843.2}{153.6} = 12 \text{ cm}$$

- 8. На чертеже отмечаем положение точки С (12,5; 12) и через нее проводим центральные (главные) оси \mathbf{x}_0 и \mathbf{y}_0
- 9. Отмечаем на чертеже и вычисляем расстояния от центра тяжести каждой фигуры до центральной оси $^{\mathbf{x_0}}$ и $^{\mathbf{y_0}}$

$a_1 = y_1 - y_c = 23 - 12 =$	b ₁ = 0
$a_2 = y_c - y_2 = 12 - 1 = 1$	$b_2 = 0$
a ₃ = ₀	$b_3 = x_c - x_3 = 12,5 - 5 = 7$
a ₄ = 0	$b_4 = x_4 - x_c = 20 - 12,5 =$

10. Осевой момент инерции для каждой фигуры

I0. Осевой момент инерции для ка
$$I_{x1} = I_{x2} = \frac{bh^3}{12} = \frac{25 \cdot 2^3}{12} = 16,6 \text{ cm}^4$$

$$I_{y1} = I_{y2} = \frac{hb^3}{12} = \frac{2 \cdot 25^3}{12} = 2604,16 \text{ cm}^4$$

$$I_{x3} = I_{x4} = 1840 \text{ cm}^4$$

$$I_{y3} = I_{y4} = 115 \text{ cm}^4$$

11. Осевой момент инерции относительно главных осей

A)
$$I_{xo} = I_{xo1} + I_{xo2} + I_{xo3} + I_{xo4}$$

 $I_{xo1} = I_{x1} + a_1^2 \cdot A_1 = 16.6 + 11^2 \cdot 50 = 6066.6 \text{ cm}^4$
 $I_{xo2} = I_{x2} + a_2^2 \cdot A_2 = 16.6 + 11^2 \cdot 50 = 6066.6 \text{ cm}^4$
 $I_{xo3} = I_{x3} + a_3^2 \cdot A_3 = 1840 + 0^3 \cdot 26.8 = 1840 \text{ cm}^4$
 $I_{xo4} = I_{x4} + a_4^2 \cdot A_4 = 1840 + 0^3 \cdot 26.8 = 1840 \text{ cm}^4$
 $I_{xo} = 6066.6 + 6066.6 + 1840 + 1840 = 15813.2 \text{ cm}^4$
B) $I_{yo} = I_{yo1} + I_{yo2} + I_{yo3} + I_{yo4}$
 $I_{yo1} = I_{y1} + b_1^2 \cdot A_1 = 2604.16 + 0^2 \cdot 50 = 2604.16 \text{ cm}^4$
 $I_{yo2} = I_{y2} + b_2^2 \cdot A_2 = 2604.16 + 0^2 \cdot 50 = 2604.16 \text{ cm}^4$
 $I_{yo3} = I_{y3} + b_3^2 \cdot A_3 = 115 + 7.5^2 \cdot 26.8 = 1622.5 \text{ cm}^4$
 $I_{yo4} = I_{y4} + b_4^2 \cdot A_4 = 115 + 7.5^2 \cdot 26.8 = 1622.5 \text{ cm}^4$

$$I_{vo} = 2604,16 + 2604,16 + 1622,5 + 1622,5 = 8453,32 \text{ cm}^4$$

Контрольные вопросы.

1. Что такое статический момент сечения?

Как определяется статический момент сечения относительно нейтральной оси?

- 2. Чему равен статический момент сечения относительно центральной оси?
- 3. Что такое осевой момент инерции сечения и в каких единицах он измеряется?
- 4. Какова зависимость между осевыми моментами инерции относительно параллельных осей?
- 5. Какие оси, проведенные в плоскости сечения, называются главными? главными центральными?
- 6. Как определяются осевые моменты инерции сложных составных сечений? **Форма отчета:** конспект с выполненными заданиями.

Практическое занятие № 15.

Тема: Расчет валов и осей на кручение. Построение эпюр крутящих моментов

Цель: обобщение, систематизация, углубление, закрепление полученных теоретических знаний;

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание: Для стального вала (рис. 13) построить эпюру крутящих моментов; определить диаметр вала на каждом участке и полный угол закручивания. Данные для различных вариантов указаны на табл. 13.

Мощности на зубчатых колесах принять $P_1 = 0.5 P_1$; $P_2 = 0.3 P_1$; $P_4 = 0.2 P_1$.

Указание. Полученное расчетное значение диаметра (в мм) округлить до ближайшего большего числа, оканчивающегося на 0, 2, 5, 8, или по СТС-В 208-75.

Пример. Для стального вала (рис. 13, а) построить эпюру крутящих моментов, определить из условия прочности требуемые диаметры каждого участка и углы закручивания этих участков.

Угловую скорость вала принять $\omega = 100\,\mathrm{pag/c}$, допускаемое напряжение $[\tau_{xy}] = 30\,\mathrm{MHz}$, модуль сдвига $G = 0.8 \cdot 10^5\,\mathrm{MHz}$.

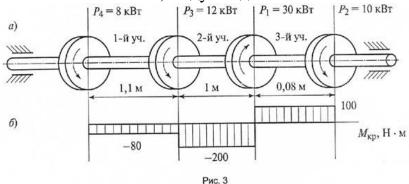


Рисунок 13

Решение. Вал вращается с постоянной угловой скоростью, следовательно, система вращающих моментов уравновешена. Мощность, подводимая к валу без потерь на трение, равен сумме мощностей, снимаемых с вала:

$$P_1 = P_2 + P_3 + P_4 = 10 + 12 + 8 = 30 \text{kBp}$$

2. Определяем вращающие моменты на шкивах:

$$M_{1} = \frac{P_{1}}{\omega} = \frac{30 \cdot 10^{3}}{100} = 300 \text{H} \cdot \text{M}$$

$$M_{2} = \frac{P_{2}}{\omega} = \frac{10 \cdot 10^{3}}{100} = 100 \text{H} \cdot \text{M}$$

$$M_{3} = \frac{P_{3}}{\omega} = \frac{12 \cdot 10^{3}}{100} = 120 \text{H} \cdot \text{M}$$

$$M_{4} = \frac{P_{4}}{\omega} = \frac{8 \cdot 10^{3}}{100} = 80 \text{H} \cdot \text{M}$$

3. Для построения эпюры крутящих моментов разбиваем брус на три участка, границами которых являются сечения, в которых приложены внешние моменты. В пределах каждого участка значения крутящих моментов таковы:

$$\begin{split} \mathbf{M}_{\text{tpi}} &= -\mathbf{M}_{\text{4}} = -80 \, \mathbf{H} \cdot \mathbf{M} \, ; \\ \mathbf{M}_{\text{tpi}} &= -\mathbf{M}_{\text{4}} - \mathbf{M}_{\text{3}} = -80 - 120 = -200 \, \mathbf{H} \cdot \mathbf{M} \, ; \\ \mathbf{M}_{\text{tpi}} &= -\mathbf{M}_{\text{4}} - \mathbf{M}_{\text{3}} + \mathbf{M}_{\text{i}} = -80 - 120 + 300 = 100 \, \mathbf{H} \cdot \mathbf{M} \, . \end{split}$$

По найденным значениям строим эпюру крутящих моментов (рис.3,б).

4. Из условия прочности на кручение

$$\begin{split} &\tau_{_{\mathbf{x}\mathbf{p}}} = \frac{M_{_{\mathbf{x}\mathbf{p}}}}{W_{_{\mathbf{p}}}} \leq \left[\tau_{_{\mathbf{x}\mathbf{p}}}\right]_{, \ \Gamma \neq \mathbf{0}} W_{_{\mathbf{p}}} = 0.2\,\dot{\sigma}^{^{3}}, \\ &\tau_{_{\mathbf{1}\mathbf{p}}} = \frac{M_{_{\mathbf{1}\mathbf{p}}}}{0.2\,\mathbf{d}^{^{3}}} \leq \left[\tau_{_{\mathbf{1}\mathbf{p}}}\right]_{, \ \Gamma \neq \mathbf{0}} &\text{Определяем диаметр вала на каждом участке по} \end{split}$$

 $d \leq \sqrt[3]{\frac{M_{1p}}{0.2|\tau_{m}|}}$

формуле

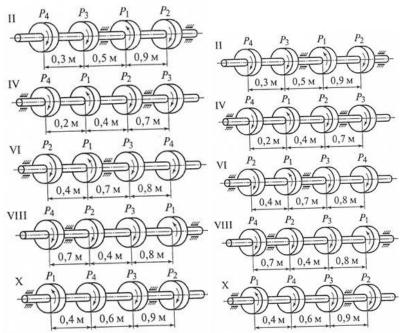
$$d \leq \sqrt[3]{\frac{M_{\text{sp}}}{0.2 |\tau_{\text{sp}}|}} = \sqrt[3]{\frac{80 \cdot 10^{3}}{0.2 \cdot 30}} = 25 \text{MM},$$

$$d \leq \sqrt[3]{\frac{M_{\text{sp}}}{0.2 |\tau_{\text{sp}}|}} = \sqrt[3]{\frac{200 \cdot 10^{3}}{0.2 \cdot 30}} = 35 \text{MM}$$

$$d \leq \sqrt[3]{\frac{M_{\text{sp}}}{0.2 |\tau_{\text{sp}}|}} = \sqrt[3]{\frac{100 \cdot 10^{3}}{0.2 \cdot 30}} = 28 \text{MM}$$

5. Определяем угол закручивания вала на каждом участке по формуле

$$\phi = \frac{M_{\rm sp} l \cdot 180^{\circ}}{J_{\rm p} G \pi}$$


где J_z - полярный момент инерции сечения.

Для круглого сечения $J_F=rac{\pi 2l^4}{32}=0.1d^4$, тогда $\phi=rac{\mathbf{M_{1p}l\cdot 180^\circ}}{0.1d^4G\pi}$. Угол закручивания

$$\begin{split} \phi &= \frac{M_{\text{apl}} l_1 \cdot 180^{\circ}}{3.14 \cdot 0.1 d_1^4 G} = \frac{-80 \cdot 10^{\circ} \cdot 1.1 \cdot 10^{\circ} \cdot 180^{\circ}}{3.14 \cdot 0.1 \cdot 25^{\circ} \cdot 8 \cdot 10^{\circ}} = -0.16^{\circ} \\ \phi &= \frac{M_{\text{apl}} l_2 \cdot 180^{\circ}}{3.14 \cdot 0.1 d_2^4 G} = \frac{-200 \cdot 10^{\circ} \cdot 1.0 \cdot 10^{\circ} \cdot 180^{\circ}}{3.14 \cdot 0.1 \cdot 35^{\circ} \cdot 8 \cdot 10^{\circ}} = -0.38^{\circ} \\ \phi &= \frac{M_{\text{apl}} l_3 \cdot 180^{\circ}}{3.14 \cdot 0.1 d_2^4 G} = \frac{100 \cdot 10^{\circ} \cdot 0.08 \cdot 10^{\circ} \cdot 180^{\circ}}{3.14 \cdot 0.1 \cdot 28^{\circ} \cdot 8 \cdot 10^{\circ}} = 0.29^{\circ} \end{split}$$

Otbet: $d_1 = 25 \text{ mm}; d_2 = 35 \text{ mm}; d_3 = 28 \text{ mm}; \phi_1 = -0.16^\circ; \phi_2 = -0.38^\circ; \phi_3 = 0.29^\circ$

Варианты заданий

Контрольные вопросы и задания

- 1. Какие деформации возникают при кручении?
- 2. Какие гипотезы выполняются при деформации кручения?
- 3. Изменяются ли длина и диаметр вала после скручивания?
- 4. Какие внутренние силовые факторы возникают при кручении?
- 5. Что такое рациональное расположение колес на валу?

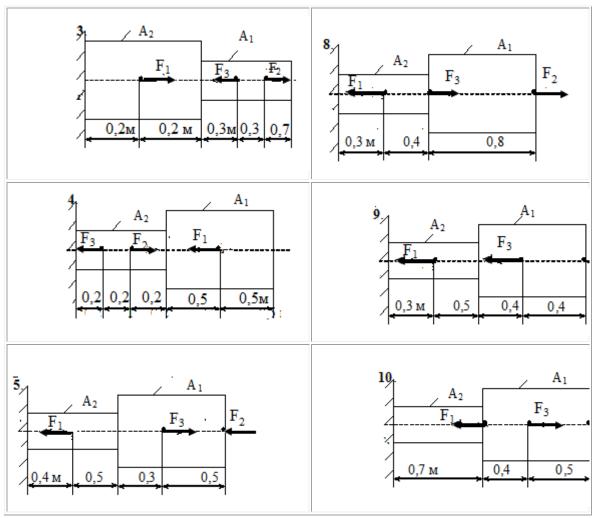
Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 16

Тема: Построение эпюр продольных и нормальных напряжений при растяжении и сжатии.

Цель: обобщение, систематизация, углубление, закрепление полученных теоретических знаний;

Оборудование: раздаточный материал


Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание: Для заданного ступенчатого бруса построить эпюры продольных сил и нормальных напряжений, определить удлинение (укорочение) бруса, выполнить проверочный расчет по прочности.

Стальной двухступенчатый брус, длины ступеней которого указаны на рис.1 (схемы 1-10), нагружен силами F_1 , F_2 и F_3 . Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить перемещение свободного конца бруса, приняв $E=210^5$ *МПа*. Числовые значения сил F_1 , F_2 и F_3 , площади поперечных сечений ступеней A_1 и A_2 для своего варианта взять из таблицы.

Вариант	F1, к H	F2, кН	A_1, cm^2	A_2 , cm^2						
1	22,0	30,6	2,7	2,1						
2	16,0	8,0	1,4	0,4						
3	3,5	12,0	2,5	1,8						
4	15,0	30,0	2,1	1,6						
5	10,0	20,0	1,2	0,8						
6	12,0	30,0	2,1	2,5						
7	14,0	16,0	2,4	2,8						
8	6,0	3,0	0,4	0,8						
9	10,8	29,0	1,8	2,0						
10	3,3	8,0	0,4	0,5						
0,		. F ₂	А ₁	6. A ₂ F ₂ F ₁ 0,35 _M 0,35 0,1 0,6 0,1						
0.22	F ₃ 5m 0,4m	F ₂	А ₁	F ₁ A ₂ A ₁ F ₃ F ₂ O,3M O,5 O,4 O,4						

Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 17.

Тема: Построение эпюр поперечных сил и изгибающих моментов

Цель: обобщение, систематизация, углубление, закрепление полученных

теоретических знаний;

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание: Построить эпюры поперечных сил и изгибающих моментов ВАРИАНТЫ ЗАЛАНИЙ

	н илиты элдлий						
вариант		М, Кн [.] м	Q, M	F, кH	а, м	В, М	с, м
1		10	15	20	2	3	2
2		15	7	10	1	4	2

3	M F q q q q q q q q q q q q q q q q q q	50	8	25	3	2	2
4		50	5	50	2	3	2
5		80	7	25	2	3	1
6	M F TIME.	60	8	40	1	3	1
7		70	5	20	1	4	2
8		25	4	25	2	3	2
9	M P P P P P P P P P P P P P P P P P P P	30	6	30	1	3	1
10		35	9	40	2	3	2

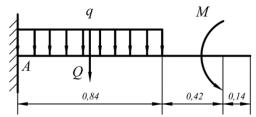
Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 18-19.

Тема: Расчет и подбор сечения балки на поперечный изгиб.

Цель: обобщение, систематизация, углубление, закрепление полученных теоретических знаний;

Оборудование: раздаточный материал


Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание:

Пример. Для заданной схемы консольной балки требуется построить эпюры поперечной силы Q и изгибающего момента M, выполнить проектировочный расчет, подобрав круглое сечение.

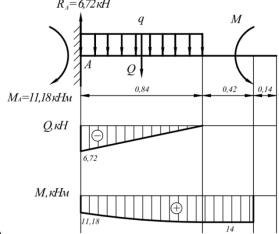
Материал — дерево, расчетное сопротивление материала $R=10M\Pi a$, $M=14\kappa H\cdot M$, $q=8\kappa H/M$

Строить эпюры в консольной балке с жесткой заделкой можно двумя способами — обычным, предварительно определив опорные реакции, и без определения опорных реакций, если рассматривать участки, идя от свободного конца балки и отбрасывая левую часть с заделкой. Построим эпюры обычным способом.

1. Определим опорные реакции.

Равномерно распределенную нагрузку q заменим условной силой $Q=q\cdot 0.84=6.72 \text{ kH}$

В жесткой заделке три опорные реакции — вертикальная, горизонтальная и момент, в нашем случае горизонтальная реакция равна 0.


Найдем вертикальную реакцию опоры $R_{\rm A}$ и опорный момент $M_{\rm A}$ из

$$R_A-Q=0 => R_A=Q=6,72 \, \mathrm{kH};$$

$$\sum M_A=0 \qquad -0.42 Q+M-M_A=0 \qquad M_A=-0.42 Q+M=11,18 \, \mathrm{kH\cdot M}$$

уравнений равновесия.

2. Строим эпюру поперечных сил.

На первых двух участках справа поперечная сила отсутствует. В начале участка с равномерно распределенной нагрузкой (справа) Q=0, в заделеке —

величине реакции $R_{A.}$

3. Для построения <u>эпюры изгибающих моментов</u> М составим выражения для их определения на участках. Эпюру моментов построим на

растянутых волокнах, т.е. вниз.

Участок 1:

$$M_1 = M = 14$$
 кНм

$$M_2 = M - \frac{qx^2}{2}$$

$$x = 0$$
 $M_2 = 14$ кНм

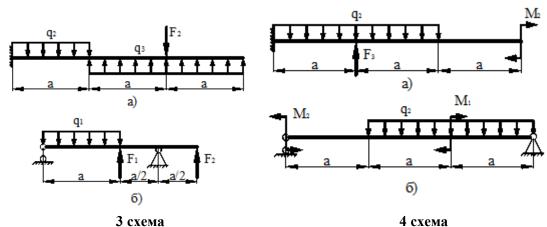
$$x = 0.84$$
 $M_2 = 11.18$ кНм

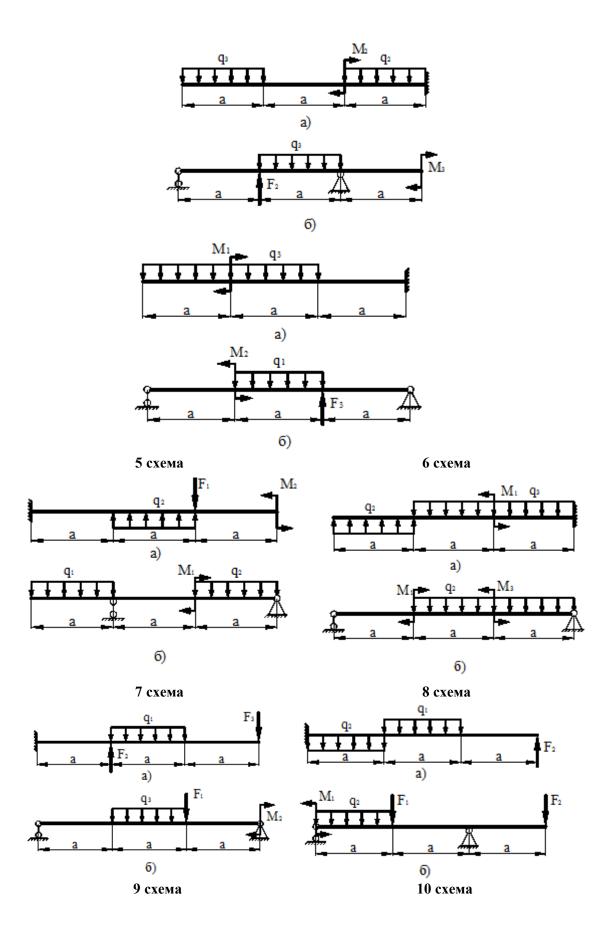
$$x = 0.42$$
 $M_2 = 13.3$ кНм

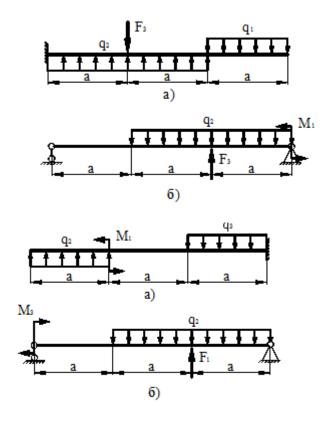
4.<u>Проектировочный расчет</u>, то есть подбор размеров поперечного сечения.

Максимальный изгибающий момент с эпюры $M=14~{\rm kH\cdot m}$. Определим осевой момент сопротивления сечения

$$W_{_{X}} \geq \frac{M_{_{max}}}{R} \ W_{_{X}} = \frac{\pi \cdot d^{3}}{32} \Rightarrow d \geq \sqrt[3]{\frac{32 \cdot M_{_{max}}}{\pi \cdot R}}$$


$$d \ge \sqrt[3]{\frac{32 \cdot 14 \cdot 10^3}{3.14 \cdot 10 \cdot 10^6}} = 0,242 \text{M} = 25 \text{CM}$$


Таким образом, подбираем сечение с диаметром 25 см.


Таблица вариантов

Номер строки	Схема по рис.2	а, м	q ₁ =q ₃ , кН/м	q ₂ , кН/м	F ₁ , кН	F ₂ , кН	F3, кН	М ₁ , кНм	M ₂ , кНм	М3, кНм
01	1	2	5	30	10	35	10	10	35	10
02	2	0,8	10	25	15	30	20	15	30	20
03	3	1	15	20	20	25	30	20	25	30
04	4	1,2	20	15	25	20	40	25	20	40
05	5	1,4	25	10	30	15	10	30	15	10
06	6	1,6	30	5	35	10	20	35	10	20
07	7	1,8	5	30	40	5	30	40	5	30
08	8	2	15	35	15	30	20	15	30	20
09	9	2	20	25	20	25	30	20	25	30
10	10	0,8	25	20	25	20	40	25	20	40

1 схема 2 схема

Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 20.

Тема: Расчет на устойчивость сжатых стержней.

Цель: обобщение, систематизация, углубление, закрепление полученных теоретических знаний;

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание:

Расчет на устойчивость заключается в определении допускаемой сжимающей силы и в сравнении с ней силы действующей:

$$F\leqslant [F]; \quad [F]=rac{F_{ ext{Kp}}}{[s_y]}; \quad F\leqslant rac{F_{ ext{Kp}}}{[s_y]},$$

где F — действующая сжимающая сила;

[F] — допускаемая сжимающая сила, обеспечивает некоторый запас устойчивости;

F_{KP} — критическая сила;

 $[s_y]$ — допускаемый коэффициент запаса устойчивости.

Обычно для сталей $[s_y] = 1.8 - 3;$ для чугуна $[s_y] = 5;$ для дерева $[s_y] = 2.8.$

Знать условие устойчивости сжатых стержней, формулы Эйлера для определения критической силы, эмпирические формулы для расчетов критического напряжения и критической силы.

Уметь выполнять проверочные расчеты на устойчивость сжатых стержней.

Порядок выполнения расчета на устойчивость

1.Почение сведений о материале стержня для определения предельной гибкости стержня расчетным путем или по таблице:

$$\lambda_{
m npeq} = \sqrt{rac{\pi^2 E}{\sigma_{
m nq}}}.$$

2. Получение сведений о геометрических размерах поперечного сечения, длине и способах закрепления концов для определения категории стержня в зависимости от гибкости:

$$i_{\min} = \sqrt{\frac{\mathcal{J}_{\min}}{A}},$$

где A — площадь сечения; Jmin— минимальный момент инерции (из осевых);

$$\lambda = \frac{\mu l}{i_{\min}},$$

μ — коэффициент приведенной длины.

3. Выбор расчетных формул для определения критической силы и критического напряжения.

При $\lambda_0 < \lambda < \lambda_{\rm пред}$ — расчет по эмпирическим формулам. При $\lambda > \lambda_{\rm пред}$ — расчет по формуле Эйлера.

4. Проверка и обеспечение устойчивости. При расчете по формуле Эйлера условие устойчивости:

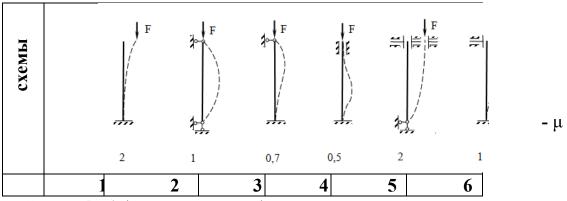
$$F\leqslant \frac{F_{\rm kp}}{[s_y]};\quad F_{\rm kp}=\frac{\pi^2E\mathcal{J}_{\rm min}}{(\mu l)^2},$$

F — действующая сжимающая сила; [sy] — допускаемый коэффициент запаса устойчивости.

При расчете по формуле Ясинского

где a, b — расчетные коэффициенты, зависящие от материала (величины коэффициентов приводятся в справ.таблице)

$$F_{\mathrm{Kp}} = \sigma_{\mathrm{Kp}} A; \quad F \leqslant \frac{F_{\mathrm{Kp}}}{[s_y]}.$$


В случае невыполнения условий устойчивости необходимо увеличить площадь поперечного сечения.

Иногда необходимо определить запас устойчивости при заданном нагружении:

$$s_y = \frac{F_{\rm KP}}{F}$$
.

При проверке устойчивости сравнивают расчетный запас выносливости с допускаемым:

$$s_y \leqslant [s_y].$$

Задача № 1 (пример решения)

l = 1 M

Рис. 37.4

Проверить устойчивость стержня. Стержень длиной 1 м защемлен одним концом, сечение — швеллер № 16, материал — Ст3, запас устойчивости трехкратный. Стержень нагружен сжимающей силой 82 кН (рис. 37.4).

Решение:

Изобразить расчетную схему с указанием размеров нагрузки.

1. Определяем основные геометрические параметры сечения стержня по ГОСТ 8240-89. Швеллер № 16: площадь сечения 18,1см²; минимальный осевой момент сечения Ty = 63,3 см⁴; минимальный радиус инерции сечения $t_y = 1,87$ см.

2. Определяем категорию стержня в зависимости от гибкости.

Предельная гибкость для материала Cт3 $\lambda_{пред} = 100$.

Расчетная гибкость стержня при длине l = 1м = 1000мм

$$\lambda = \frac{2 \cdot 1000}{18,7} = 106,95.$$

Рассчитываемый стержень — стержень большой гибкости, расчет ведем по формуле Эйлера.

$$F_{\kappa p} = \frac{\pi^2 E \mathcal{J}_{\min}}{(\mu l)^2}; \ F_{\kappa p} = \frac{3.14^2 \cdot 2 \cdot 10^5 \cdot 63.3 \cdot 10^4}{(2 \cdot 1000)^2} = 312\,000\,\text{H} = 312\,\text{kH}.$$

3. Допускаемая нагрузка на стержень

$$[F] = F_{\rm kp}/[s_y].$$

$$[F_y] = \frac{312}{3} = 105,5 \,\mathrm{kH}.$$

4. Условие устойчивости

$$F \leqslant [F_y];$$

82кН < 105,5кН. Устойчивость стержня обеспечена.

_		100,0111		IIIDOUIL						
Вариант	1	2	3	4	5	6	7	8	9	0
<i>l</i> , м	4	3	4	5	6	5	3	4	5	6
Схема №	1	2	3	4	5	6	1	2	3	4
материал	СтЗ	СтЗ	СтЗ	СтЗ	СтЗ	СтЗ	СтЗ	СтЗ	СтЗ	СтЗ
F, кH	75	80	81	70	86	90	75	73	82	80
сечение	Двута	Двутав	Двутав	Швелле	Двутав	Двутав	Двутав	Двутав	Двутав	Швелл
	вр	p	p	р	p	p	p	p	p	ep
	40	30	30a	№14	№ 33	36	55	№ 50	70	№ 16

Форма отчета: конспект с выполненными заданиями.

Тема: Расчет на контактную усталость и усталость при изгибе зубьев зубчатых колес

Цель: Освоить методику расчёта на контактную прочность и изгиб передач.

- Научиться определять геометрические параметры передачи.
- Научиться определять расчётные контактные напряжения и расчётные напряжения на выносливость при изгибе.

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание. Выбрать материал, назначить термическую обработку и определить допускаемые напряжения на контактную и изгибную прочность для пяти вариантов термической обработки.

Теоретическое обоснование

В зависимости от вида изделия, условий его эксплуатации и требований к габаритным размерам выбирают необходимую твердость колес и материалы для их изготовления. Для силовых передач чаще всего применяют стали. Передачи со стальными зубчатыми колесами имеют минимальную массу и габариты, причем чем меньше габариты, тем выше твердость рабочих поверхностей зубьев, которая, в свою очередь, зависит, как от марки стали, так и от вида термической обработки.

На практике в основном применяют следующие варианты термической обработки (т.о.):

1. Т.о. колеса- улучшение, твердость 235... 262 НВ;

т.о. шестерни- улучшение, твердость 269...302 НВ.

Марки сталей одинаковы для колеса и шестерни: 45, 40X, 40XH, 35XM и др. Для прямозубых колес твердость шестерни должна быть на 30-50 единиц Бринелля больше, чем твердость колеса. Для косозубых колес эта разность должна быть по возможности наибольшей. Зубья колес из улучшаемых сталей хорошо прирабатываются и не подвержены хрупкому разрушению, но имеют ограниченную нагрузочную способность. Применяют в слабонагруженных и средненагруженных передачах. Область применения улучшенных зубчатых колес сокращается.

- 2. Т.о. колеса- улучшение, твердость 269...302 НВ;
- т.о. шестерни улучшение и закалка ТВЧ, твердость поверхности в зависимости от марки стали 45...53 HRC. Твердость сердцевины зуба соответствует термообработке улучшение. Марки сталей одинаковы для колеса и шестерни: 40X, 40XH, 35XM и др.
 - 3. Т.о. колеса и шестерни одинаковая улучшение и закалка ТВЧ,

твердость поверхности в зависимости от марки стали: 45...53 HRC. Марки сталей одинаковы для колеса и шестерни: 40X,40XH, 35XM и др. Закалённые колёса не прирабатываются, поэтому разность твёрдости шестерни и колеса не нужна.

- 4. Т.о. колеса улучшение и закалка ТВЧ, твердость поверхности в зависимости от марки стали 45...53 HRC;
- т.о. шестерни улучшение, цементация и закалка, твердость поверхности 56...63 HRC. Материал шестерни стали марок 20X, 20XH2M, 18ГТ, 12XH3A и др.
- 5. Т.о. колеса и шестерни одинаковая улучшение, цементация и закалка, твердость поверхности 56...63 HRC. Цементация (поверхностное насыщение углеродом) с последующей закалкой наряду с большой твердостью поверхностных слоев обеспечивает и высокую прочность зубьев на изгиб. Марки сталей одинаковы для колеса и шестерни: 20X, 20XH2M, 18XГТ, 12XH3A, 25XГМ и др.

Кроме цементации применяют также нитроцементацию (твердость поверхности 56...63 HRC, стали марок 25XГМ, 30XГТ) и азотирование(твердость поверхности 58...67 HRC, стали марок 38X2МЮА, 40XHMA).

При поверхностной термической или химико-термической обработке зубьев механические характеристики сердцевины зуба определяет предшествующая термическая обработка (улучшение).

Несущая способность зубчатых передач по контактной прочности тем выше, чем выше поверхностная твердость зубьев. Поэтому целесообразно применение поверхностного термического или химико-термического упрочнения. Эти виды упрочнения позволяют в несколько раз повысить нагрузочную способность передачи по сравнению с улучшаемыми сталями. Например, допускаемые контактные напряжения $[\sigma_{\rm H}]$ зубчатых колес, подвергнутых цементации, два раза превышают значения $[\sigma_{\rm H}]$ колес, подвергнутых термическому улучшению, что позволяет уменьшить массу в четыре раза.

Однако при назначении твердости рабочих поверхностей зубьев следует иметь в виду, что большей твердости соответствует более сложная технология изготовления зубчатых колес и малые размеры передачи (что может привести к трудностям при конструктивной разработке узла).

Допускаемые контактные напряжения [σ_{H_1}] для шестерни и [σ_{H_2}] для колеса определяют по общей зависимости (но с подстановкой соответствующих параметров для шестерни и колеса). При выборе допускаемых контактных напряжений необходимо учитывать влияние на контактную прочность долговечности (ресурса работы), шероховатости сопрягаемых поверхностей зубьев и окружной скорости.

При проектном расчете:

$$[\boldsymbol{\sigma}_{\boldsymbol{H}}] = \boldsymbol{\sigma}_{\boldsymbol{H} \text{ limb}} \times K_{\text{HL}}/[S_{\text{H}}],$$

где $\sigma_{H_{\text{limb}}}$ - предел контактной выносливости при базовом числе циклов нагружения (определяется по таблице 18.1 в зависимости от термической обработки);

Таблица 18.1 -Предел контактной выносливости

Способ обработки зубьев зубьев	Средняя твердость поверхности зубьев	Сталь	$oldsymbol{\sigma_{H_{ m limb,}}}$ МПа
Нормализация или улучшение	HB<350	Углеродистая или легированная	2HB+70
Объемная закалка	HRC3850	18HRC+150	
Поверхностная закалка	HRC4050	17 HRC+200	
Цементация и нитроцементация	HRC>56	легированная	23HRC
Азотирование	HV 550-750	легированная	

N_{ho} - базовое число циклов нагружения;

 N_{he} - эквивалентное число циклов нагружения.

При HB<200 N_{HO}=10⁷.

При НВ 200... 500 N_{HO} \uparrow по линейному закону от 10^7 до 6×10^7 .

 K_{hl} - коэффициент долговечности.

Если число циклов нагружения каждого зуба колеса больше базового, то K_{hl} =1 (обычно для курсовых проектов).

В других условиях, если $N_{\text{HE}} < N_{\text{HO}}$, то $K_{\text{HL}} = \sqrt[6]{\frac{N_{\text{HO}}}{N_{\text{HE}}}}$.

Если при расчете колес из нормализованной стали $K_{HL} > 2,6$, то принимают $K_{HL} = 2,6$.

Для колёс из закаленной стали $K_{HL} \le 1,8$.

[S_H]- коэффициент безопасности.

 $[S_H]$ = 1,2... 1,3 при поверхностном упрочнении;

 $[S_H]$ = 1,1...1,2 для колёс из нормализованной и улучшенной стали, при объёмной закалке.

Для прямозубой передачи

$$[\boldsymbol{\sigma}_{H}] = [\boldsymbol{\sigma}_{H \min}].$$

Для косозубых и шевронных колес

$$[\boldsymbol{\sigma}_{H}] = 0.45 ([\boldsymbol{\sigma}_{H1}] + [\boldsymbol{\sigma}_{H2}]).$$

Затем проверяется выполнение условия

$$[\sigma_H] \leq 1,23 [\sigma_{Hmin}].$$

Если это неравенство не выполняется, то принимают

$$[\sigma_H] = 1,23 [\sigma_{Hmin}].$$

ДОПУСКАЕМЫЕ НАПРЯЖЕНИЯ ИЗГИБА

Допускаемые напряжения изгиба определяются отдельно для шестерни и колеса по формуле

$$[\sigma_F] = \sigma_{Flimb}[S_F],$$

где σ_{Flimb} - значение предела выносливости при отнулевом цикле изгиба, зависит от термической обработки, определяется по табл. 18.2.

Таблица 18.2. - Предел выносливости при изгибе

TO (XTO) σ_{Flimb}	[S _F]'
---------------------------	--------------------

	, МПа	
Нормализация, улучшение	1,8HB	1,75
Объемная закалка	500- 550	1,8
Поверхностная закалка		1,75
Цементация		1,55
Азотирование		1,75

Коэффициент безопасности $[S_F]=[S_F]' \times [S_F]"$

[Sf]'- учитывает нестабильность свойств материала (таблица 18.2)

[S_F]"- учитывает способ получения заготовок:

для поковок и штамповок $[S_F]$ "=1;

для проката [S_F]"=1,25;

для литья [S_F]"=1,3.

Для реверсируемых передач $[\sigma_F]$ снижают на 25%.

Твёрдость материала выбирается в зависимости от марки стали и термической обработки по табл. 18.3.

Таблица 18.3.-Твёрдость материала

Марка стали	Размер сечения s, мм, не более	Твердость поверхности	Термообработка
		192228НВ	Улучшение
		170217HB 192240HB 241285HB	Нормализация Улучшение «
		179228HB 228255HB	Нормализация Улучшение
40X		230260HB 260280 HB 5059HRC	« « Азотирование аа Азотирование
45X	100300 300 500	230280 HB 163269 HB 163269 HB 230300 HB	Улучшение « « «
ЗОХГС		250260 HB	Улучшение
40XH	130300	230 - 300 HB ≥ 241HB 4854HRC	« « Закалка Закалка
35XM		241 HB 269 HB 4553HRC	Улучшение « Закалка
40XHMA		≥ 302HB ≥ 217HB	Улучшение «
35ХГСА		235 HB 270 HB 310HB 4653HRC	« « « Закалка
20X		5663HRC	Цементация
12XH3A		5663HRC	«
25ΧΓΤ	-	5863HRC	«
38ХМЮА	-	5767HRC	Азотирование

Таблица 18.4 - Варианты заданий для практической работы

Номер варианта	улучшение	закалка	цементация	азотирование	число циклов нагружения	тип передачи
1	40XH	40XH		40X	$2x10^5$	реверсируемая
2	35XM	35XM	20X		$3x10^5$	реверсируемая
3	35ХГСА	35ХГСА	12XH3A		$4x10^5$	реверсируемая
4	40XH	40XH	25ΧΓΤ		5x10 ⁵	реверсируемая
5	35XM	35XM		38ХМЮА	6x10 ⁵	не реверсируемая
6	35ХГСА	35ХГСА	20X		7x10 ⁵	не реверсируемая
7	40XH	40XH	20X		8x10 ⁵	не реверсируемая
8	35ХГСА	35ХГСА		40X	9x10 ⁵	не реверсируемая
9	40XH	40XH	12XH3A		$2x10^5$	реверсируемая
10	35XM	35XM	12XH3A		3xIO ⁵	реверсируемая

Примечание. При расчетах практической работы № 1 необходимо учесть, что в вариантах 1...5 заготовка выполнена штамповкой, в вариантах 6...10 - прокаткой.

Форма отчета: конспект с выполненными заданиями.

Практическое занятие № 22.

Тема: Подбор элементов передач по видам

Цель: обобщение, систематизация, углубление, закрепление полученных теоретических знаний;

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания.

Задание:

Расчет привода начинают с составления кинематической схемы (если она не задана), определения общего к. п. д. и общего передаточного числа привода, выбора электродвигателя и распределения общего передаточного числа по отдельным ступеням редуктора и передачам привода, а также определения крутящих моментов и частот вращения валов. Исходными данными для расчета на начальном этапе являются: угловая скорость ω i(рад/с) или частота вращения ni(мин-1)1входного вала привода и мощность Pi(кВт) на этом валу. Выбор электродвигателя и кинематический расчет привода выполняются в следующей последовательности.

Определяют общий к. п. д. привода по формуле побщ = $\eta 1 \cdot \eta 2 \cdot \eta 3$... ηn ,где $\eta 1$, $\eta 2$, $\eta 3$... ηn –к. п. д. отдельных передач, подшипников, муфт, входящих в привод и перечисленных в порядке от входного к выходному валу привода (ориентировочные значения к. п. д. приведены в табл. 19.1).В предварительных расчетах для нерасцепляемых механических муфт, например, упругих и компенсирующих, где имеются подвижные или

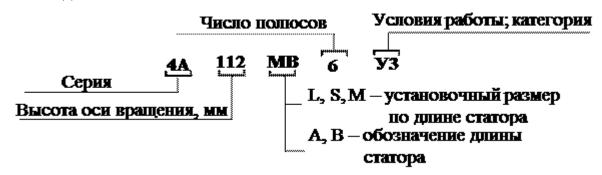
легкодеформируемые элементы, к. п. д. можно принимать в пределах 0,98-0,99, для нерасцепляемых жестких —равным 1, а для фрикционных —0,85-0,95. При наличии более точных данных значения подлежат корректировке.

Таблица 19.1

Тип передачи	К. п. д. передачи		Рекомендуемое	Удельная масса
илиустройства			передаточное	передачи,
			число ирек	кг/кВт
	закрытой	открытой		
Зубчатая цилиндрическая	0,96-0,980	0,93-0,95	2,5-6,3	18-0,4
Зубчатая коническая	0,95-0,97	0,91-0,93	2-4	25-0,6
Червячная передача при				
червяке:				
однозаходном	0,70-0,80	-	10-50	4,5
двухзаходном	0,75-0,85	-	10-50	4,5
четырехзаходном	0,80-0,90	-	10-50	4,5
Цепная передача	0,95-0,97	0,92-0,95	1,5-4	10,0-6,0
Ременная передача	-	0,94-0,97	2-4	5,0-1,0
Фрикционная передача	0,90-0,96	0,70-0,80	1-6	30,0-8,0
Одна пара подшипников	0,99	-0,995	-	-
качения				
Одна пара подшипников 0,98		0,99	-	-
скольжения				

Примечание. Большие значения удельной массы для передач до 10кВт, меньшие –свыше 10кВт.

Если привод содержит передачи, передающие мощность параллельными потоками, например, раздвоенную зубчатую передачу или несколько клиновых ремней, то к. п. д. каждой такой передачи принимают по табл. и учитывают один раз. Выбор к. п. д. червячной передачи привода на начальной стадии расчета затруднен, т.к.неизвестно число заходов червяка z1. Ориентиром служат обычно средние значения к. п. д. для червячных передач. Можно, например, принять к. п. д. для двухзаходного червяка, а при последующих расчетах принятое значение уточнить и, если необходимо, сделать перерасчет.


<u>Производят подбор электродвигателя по потребной мощности $P'_{дВ}$, которая может быть определена по мощности Pi на выходном валу привода:</u>

$$P'_{\text{ДВ}} = Pi / \eta_{\text{общ}}$$

В приводах рекомендуется применять (при отсутствии каких-либо особых требований) экономичные асинхронные электродвигатели единых серий АИР, 4А или другие более эффективные. Некоторые основные параметры двигателей серий 4А, в том числе геометрические, можно найти в (номинальная) литературе. Если синхронная частота электродвигателя установлена заданием, то его тип и мощность находят по потребной мощности Р'дв так, чтобы номинальная мощность превышала расчетную $P'_{AB} \ge P_{AB}$. Затем определяют фактическую (асинхронную) частоту вращения вала электродвигателя. Если задание не содержит сведений электродвигателе, следует отобрать TO для анализа несколько

электродвигателей с различной частотой вращения, например, 3000, 1500, 1000, 750мин-1. Для предварительного анализа отбирают лишь самые необходимые параметры. При выборе двигателей, кроме соблюдения основного условия Р дв \geq Р'дв , необходимо учитывать также характер нагрузки и кратность перегрузки механизмов привода в процессе пуска или работы. Эта информация обычно содержится в техническом задании на проектирование, например, в циклограмме нагружения или типовом режиме нагружения.

Электродвигатели должны иметь величины отношений Тпуск /Тном и Ттах / Тном, соответствующие характеру нагружения привода. При значительных пусковых нагрузках целесообразно применять двигатели с повышенным пусковым моментом, а при ударных нагрузках и частых реверсах -с повышенным скольжением. При необходимости в приводах могут быть применены двухскоростные двигатели, например, двигатели, с частотами 3000/1500, 750/1500, 1000/1500, номинальными вращения 750/1000, 500/3000, 500/1000об/мин. Двигатели серии 4A должны 19523-74.Структура соответствовать требованиям ГОСТ условного обозначения двигателей.

Форма отчета: конспект с выполненными заданиями.

4. ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

4.1 Основные печатные и (или) электронные издания:

- О-1. Лукьянчикова, И. А. Техническая механика. Примеры и задания для самостоятельной работы: учебное пособие для спо / И. А. Лукьянчикова, И. В. Бабичева. 4-е изд., стер. Санкт-Петербург: Лань, 2025. 236 с. ISBN 978-5-507-50566-1. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/447386 (дата обращения: 22.01.2025). Режим доступа: для авториз. пользователей.
- О-2. Эрдеди, А.А. Техническая механика: учебное издание / А.А. Эрдеди, Н.А. Эрдеди. Москва: Академия, 2023. —528 с. (Специальности среднего профессионального образования). URL: https://academia-moscow.ru/catalogue/4986/710973/. Режим доступа: Электронная библиотека «Academia-library». Текст: электронный

4.2 Дополнительные печатные и (или) электронные издания (электронные ресурсы):

- Д-1. Аркуша, А.И. Руководство к решению задач по теоретической механике: учеб. пособие для средних проф. учеб. Заведений. 4-е изд., испр. М.: Высш.шк., 2000. 336 с.: ил.
- Д-2. Брадис, В.М. Четырехзначные математические таблицы: Для сред. шк. -57-е изд. М.: Просвещение, 1990.-95 с.
- Д-3. Олофинская, В.П. Техническая механика.: Курс лекций с вариантами практических и тестовых заданий: учебное пособие / В.П. Олофинская. 3-е изд., испр. М.: «ФОРУМ», 2012. 352 с.: ил. (Профессиональное образование).
- Д-4. Сетков, В.И. Сборник задач по технической механике: учебное пособие для студ. учреждений сред. проф. образования / В.И. Сетков. 6-е изд., стер. М.: Издательский центр «Академия», 2010. 224 с.

ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЕННЫХ В МЕТОДИЧЕСКИЕ УКАЗАНИЯ

№ изменения, дата внесения, № страницы с изменением						
Было	Стало					
Основание:						
Подпись лица, внесшего изменения						