ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ЧЕРЕМХОВСКИЙ ГОРНОТЕХНИЧЕСКИЙ КОЛЛЕДЖ ИМ. М.И. ЩАДОВА»

Рассмотрено на заседании ЦК «Горных дисциплин» Протокол №5 «09» января 2024 г. Председатель: Н.А. Жук

УТВЕРЖДАЮ зам. директора по УР

О.В.Папанова «22 » февраля 2024 г.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

для выполнения

самостоятельных работ студентов

по учебной дисциплине

ОП. 10 ОБОГАЩЕНИЕ ПОЛЕЗНЫХ ИСКОПАЕМЫХ программы подготовки специалистов среднего звена 21.02.15 Открытые горные работы

Разработал Самородова Т.В.

ПЕРЕЧЕНЬ САМОСТОЯТЕЛЬНЫХ РАБОТ

№ п/п	Тема	Тема самостоятельной работы	Кол-во часов	Оценка и контроль
		МДК 01.01		
1	Тема 1.	Самостоятельная работа:	72	Конспект
	Общие	Классификация полезных ископаемых.		Презентация
	понятия	Основные характеристики вещественного состава		Практическое
	обогащения	полезных ископаемых		задание
	полезных	Технологические свойства минералов		
	ископаемых	Цель и задачи обогащения полезных ископаемых		
		Классификация технологических схем		
		обогатительных процессов		
		Назначение и сущность процессов подготовки		
		(операция грохочения) полезных ископаемых к		
		дальнейшему обогащению.		
		Теоретические основы грохочения		
		Определение гранулометрического состава углей		
		Устройство и принцип действия инерционных		
		грохотов		
		Назначение и сущность процессов подготовки		
		(операция дробление) полезных ископаемых к		
		дальнейшему обогащению		
		Устройство и принцип действия щековых		
		дробилок, их технические характеристики		
		Назначение и сущность процессов подготовки		
		(операция измельчение) полезных ископаемых к		
		дальнейшему обогащению		
		Физико-химические основы гравитационных		
		процессов.		
		Фракционный анализ и обогатимость углей		
		Обогащение в тяжелых средах		
		Сепараторы для обогащения в тяжелых суспензиях		
		Оборудование для обогащения в тяжелых		
		суспензиях		
		Принципы и теоретические основы отсадки		
		Отсадочные машины		
		Обогащение в криволинейных и центробежных		
		потоках воды		

СОДЕРЖАНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

<u>Цель:</u> научиться осуществлять подбор необходимой литературы, вычленять из нее главное, систематизировать имеющийся материал.

Методические указания: написать конспект по теме. сделать презентацию на тему: «Гравитационные методы обогащения», выполнить практическое задание

Практическое задание

Тема: Решение задач Основы процесса дробления

Методические указания

Основные формулы. Степень дробления

$$i = \frac{D_{max}}{d_{max}},$$

Или

$$i = \frac{D_{\rm cp}}{d_{\rm cp}}$$

где D_{max} и d_{max} — максимальный размер частиц в исходном питании и дробленом продукте, мм;

 $D_{\rm cp}$ и $d_{\rm cp}$ —среднединамический диаметр частиц в исходном питании и в дробленом продукте, мм.

Общая степень дробления

$$i=i_1\cdot i_2\dots i_n,$$

где i_1 , i_2 ..., i_n — степень дробления в отдельных стадиях.

Удельная работа дробления

$$A = \frac{3\sigma_{\rm p}^2(i-1)}{2E}$$
, Дж/м³

где $\sigma_{\rm p}$ — предел прочности материала на сжатие, Па;

i — степень дробления;

E — модуль упругости, Па.

Эффективность дробления

$$E = \frac{b_{1-s} - a_{1-s}}{a_{>s}}$$

где *s*—заданная крупность дробления, мм;

 a_{1-s} и b_{1-s} — содержание класса 1-s мм в исходном питании и дробленом продукте, %;

 $a_{>s}$ — содержание класса > s мм в исходном питании, %.

Задача 58. Определить степень дробления, если уголь класса 100—250 мм дробится до 100 мм.

Ответ. 2,5.

Задача 59. Определить степень дробления угля по результатам рассева исходного питания и дробленого продукта, приведенного в табл. 9. Ответ. 8,8.

 Таблица 9.

 Результаты ситового анализа исходного питания и дробленного продукта

Класс, мм	Выход, %		
	исходного питания	Дробленного продукта	
50-100	81,7	-	
25-50	8,4	0,5	
13-25	4,9	6,3	
0-13	5,0	93,2	
Итого	100	100	

Задача 60. Определить общую степень дробления угля в три стадии, если степень дробления в первой стадии 2,5, во второй 4 и в третьей 8.

Ответ. 80.

Задача 61. Определить удельную работу дробления угля, если степень дробления i=3, предел прочности угля на сжатие $\sigma_{\rm p}$ =7 МПа и модуль упругости E =1800 МПа.

Ответ. 0.082 МДж/м^3

Задача 62. Определить удельную работу дробления антрацита. если степень дробления i =4, предел прочности антрацита на сжатие σ_p =30 МПа и модуль упругости E =3200 МПа.

Ответ. 1,27 МДж/ M^3 .

Задача 63. Уголь класса >100 мм дробится до 100 мм. Определить эффективность дробления, если содержание класса 100 мм в исходном питании 85%, содержание класса 1— 100 мм в исходном питании 10% и в дробленом продукте 78%. Ответ. 96,2%.

Задача 64. Определить эффективность дробления угля до 13 мм, если содержание в исходном питании класса >13 мм 65%, содержание класса 1 —13 мм в исходном питании 25% и в дробленом продукте 80%.

Ответ. 84,6%.

Задача 65. Определить эффективность дробления промпродукта до 10 мм по результатам ситового анализа исходного питания и дробленого продукта (табл. 10). Ответ. 80,4%.

Таблица 10.

Результаты ситового анализа исходного питания и дробленного продукта

Класс, мм	Выход, %		
	исходного питания	Дробленного продукта	
>10	72,0	8,2	
1-10	20,1	78,0	
0-1	7,9	13,8	
Итого	100	100	

Форма отчета: Студенты представляют для проверки конспект, презентацию и расчеты задач.

Вопросы для самоконтроля

- 1. Объясните назначение процессов обогащения.
- 2. Назовите виды полезных ископаемых, которые необходимо обогащать.
- 3. Перечислите продукты обогащения и ориентировочно укажите их качество.
- 4. Назовите виды операций обогащения и их назначение.
- 5. Укажите свойства минералов, на различии в которых основано их разделение.
- 6. Назначение подготовительных процессов. Их виды.
- 7. Законы дробления. Их трактовка.
- 8. Что характеризуют понятия степень дробления, стадии дробления.
- 9. Особенность щековых дробилок. Принцип работы.
- 10. Конусные дробилки. Их типы, особенности.
- 11. Валковые дробилки. Область применения.
- 12. Схемы дробления. Их разновидности.
- 13. Объясните правила эксплуатации подготовительного оборудования.
- 14. Назовите расчетные параметры дробильного оборудования.
- 15.Перечислите требования охраны труда и правил безопасности при обслуживании дробилок
- 16. Назовите причины, которые могут привести к аварийным режимам работы мельниц.
- 17. Физические основы разделения минералов с помощью гравитационных процессов.
- 18. Фракционный анализ. Назначение. Последовательность проведения.
- 19. Порядок оформления результатов фракционного анализа.
- 20. Построение кривых обогатимости.
- 21. Возможности кривых обогатимости.
- 22. Теоретический баланс.
- 23. Принцип обогащения отсадкой.
- 24. Что обозначает понятие «конечная скорость падения частиц».
- 25. Явление равнопадаемости.
- 26.Последовательность выделения продуктов в отсадочной машине.
- 27. Регулирование толщины постели.
- 28. Регулирование подачи воздуха.
- 29. Назначение подаппаратной воды.
- 30. Фактор, определяющий частоту пульсаций.
- 31.Типы отсадочных машин и их назначение.
- 32. Чем определяется категория обогатимости.
- 33.Схема отсадки для углей средней категории обогатимости.
- 34. Принцип обогащения на концентрационных столах. Область применения. Параметры регулирования.

- 35. Сущность процесса флотации, область применения.
- 36. Критерий смачиваемости.
- 37. Назначение флотационных реагентов.
- 38. Реагенты собиратели. Назначение. Механизм действия.
- 39. Реагенты пенообразователи. Назначение. Механизм действия.
- 40. Реагенты депрессоры. Назначение. Область применения.
- 41. Реагенты активаторы. Назначение. Область применения.
- 42. Реагенты регуляторы среды.
- 43. Флотационные машины. Назначение. Типы.
- 44. Механические флотационные машины. Принцип действия.
- 45. Схемы флотации углей.
- 46. Классификация специальных методов обогащения.
- 47. Опишите основные технологические задачи, решаемые с помощью электрических метолов обогашения.
- 48. Опишите основные технологические задачи, решаемые с помощью магнитного обогащения.
- 49. Опишите основные технологические задачи, решаемые с помощью радиометрического обогащения.
- 50. Что является разделительным признаком при радиометрическом обогащении.

4. ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ОБУЧЕНИЯ

Основные:

1.Клейн, М.С.Технология обогащения полезных ископаемых: учебное пособие/ М.С. Клейн, Т.Е Вахонина.- Кемерово: КузГТУ, 2017.- 193 с. (ЭБС ЛАНЬ).

<u>Дополнительные:</u>

- 1. Абрамов, А.А. Переработка, обогащение и комплексное использование твердых полезных ископаемых Обогатительные процессы и аппараты, Том 1: учебник/ А.А. Абрамов. М.: Горная книга, 2008. -470 с.
- 2. Абрамов, А.А. Переработка, обогащение и комплексное использование твердых полезных ископаемых, Технология обогащения полезных ископаемых, Том 2: учебник/ А.А. Абрамов. М.: Горная книга, 2004.-510 с.
- 3. Абрамов, А.А. Флотационные методы обогащения: учебник/ А.А. Абрамов. М.: изд-во МГГУ, изд-во Горная книга, 2008.-710 с.
- 4. Авдохин, В.М. Обогащение углей. Т.1. Процессы и машины: учебник/ В.М. Авдохин. М.: Горная книга, 2012.-424 с.
- 5. Авдохин, В.М. Обогащение углей. Т.2. Технологии: учебник/ В.М. Авдохин. М.: Горная книга, 2012.-475 с.

- 6.Авдохин В.М.Основы обогащения полезных ископаемых. Технологии обогащения полезных ископаемых, Том 2: учебник / В.М. Авдохин .- М.: Горная книга, 2018.-420 с.
- 7. Авдохин, В.М. Основы обогащения полезных ископаемых. Обогатительные проце, Том 1: учебник / В.М. Авдохин .- М.: Горная книга, 2017.-312 с.
- 8.Артюшин, С.П. Сборник задач по обогащению углей :учебное пособие/ С.П. Артюшин.-М.: Недра,1979-223 с.
- 9.Артюшин, С.П. Обогащение углей :учебное пособие/ С.П. Артюшин.-М.: Недра,1975-384с.
- 10.Практикум по обогащению полезных ископаемых :учебное пособие/ под ред. Н.Г. Бедраня.- М.: Недра, 1991.- 526 с.
- 11. Гройсман, С.И. Сборник задач и упражнений по обогащению углей: учебное пособие/ С.И. Гройсман.-М.: Недра, 1992.- 239 с.
- 12. Гройсман, С.И. Технология обогащения углей: учебник/ С.И. Гройсман. М.: Недра, 1987. 357 с.
- 12.Моршинин, В.М. Основы обогащения полезных ископаемых: учебник/ В.М. Моршинин.-М.: Недра, 1983.- 190 с.

Интернет-ресурсы:

1. Клейн, М.С.Технология обогащения полезных ископаемых: учебное пособие/ М.С. Клейн, Т.Е Вахонина.- Кемерово: КузГТУ, 2017.- 193 с.— ЭБС ЛАНЬ.

5. ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЕННЫХ В МЕТОДИЧЕСКИЕ УКАЗАНИЯ

№ изменения, дата внесения, № страницы с изменением		
Было	Стало	

Основание:	
Подпись лица, внесшего изменения	