ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ЧЕРЕМХОВСКИЙ ГОРНОТЕХНИЧЕСКИЙ КОЛЛЕДЖ ИМ. М.И. ЩАДОВА»

PACCMOTPEHO

на заседании ЦК «Горных дисциплин» Протокол №5 «09» января 2024 г. Председатель: Н.А. Жук

Утверждаю:

Зам. директора по УР О.В. Папанова «22» февраля 2024 г.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по практическим занятиям студентов

учебной дисциплины

ОП. 10 Обогащение полезных ископаемых

Программы подготовки специалистов среднего звена по специальности 21.02.15 Открытые горные работы

> Разработал: Самородова Т.В.

СОДЕРЖАНИЕ

		CTP.
1.	ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
2.	ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ	4
3.	СОДЕРЖАНИЕ ПРАКТИЧЕСКИХ ЗАНЯТИЙ	4
4.	ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ	25
	ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЁННЫХ В МЕТОЛИЧЕСКИЕ УКАЗАНИЯ	27

1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Методические указания по практическим занятиям учебной дисциплине «ОБОГАЩЕНИЕ ПОЛЕЗНЫХ ИСКОПАЕМЫХ» составлены в соответствии с учебным планом и рабочей программой дисциплины по специальности 21.02.15 Открытые горные работы.

Цель проведения практических занятий: формирование практических умений, необходимых в последующей профессиональной и учебной деятельности.

Методические указания являются частью учебно-методического комплекса по учебной дисциплине и содержат:

- тему занятия (согласно тематическому плану учебной дисциплины);
- цель;
- оборудование (материалы, программное обеспечение, оснащение, раздаточный материал и др.);
- методические указания (изучить краткий теоретический материал по теме практического занятия);
 - ход выполнения;
 - форму отчета.

В результате выполнения полного объема практических занятий студент должен уметь:

- применять техническую терминологию;
- выделять из технологической схемы обогащения, составляющие её технологические процессы;
- производить расчет и выбор подготовительного, основного и вспомогательного оборудования для осуществления технологических процессов обогащения полезных ископаемых;
- читать типовые технологические схемы обогащения.

При проведении практических работ применяются следующие технологии и методы обучения:

- упражнения действия по инструкции;
- проблемное обучение;
- решение кейсов;
- работа в малых группах

Оценка выполнения заданий практических занятий

Оценка «отлично» ставится, если студент выполнил практическое занятие в полном объеме с соблюдением необходимой последовательности действий; в ответе правильно и аккуратно выполняет все записи, таблицы, вычисления; правильно выполняет анализ ошибок.

Оценка «хорошо» ставится, если студент выполнил требования к оценке "5", но допущены 2-3 незначительных недочета.

Оценка «удовлетворительно» ставится, если студент выполнил практическое занятие не полностью, но объем выполненной части таков, что

позволяет получить правильные результаты и выводы; в ходе проведения занятия были допущены ошибки.

Оценка «неудовлетворительно» ставится, если студент выполнил практическое занятие не полностью или объем выполненной части не позволяет сделать правильных выводов.

В соответствии с учебным планом и рабочей программы дисциплины «Обогащение полезных ископаемых» на практические занятия отводится: 24 часа.

2. ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

№ п/п	Тема практических занятий	Количество часов
1.	Практическое занятие №1 Выделение из технологической схемы обогащения, составляющие ее технологические процессы. Чтение технологических схем обогащения.	2
2.	Практическое занятие №2 Выполнение технологических схем	2
3.	Практическое занятие №3 Решение задач Основы процесса обогащение в тяжелых средах	2
4.	Практическое занятие №4 Решение задач Основы процесса отсадки. Оборудование для отсадки	2
5.	Практическое занятие №5 Решение задач Оборудование для флотации	2
6.	Практическое занятие №6 Составление технологических схем обогащения.	2
7.	Дифференцированный зачет	2

3. СОДЕРЖАНИЕ ПРАКТИЧЕСКИХ ЗАНЯТИЙ Практическое занятие №1

Тема: Выделение из технологической схемы обогащения, составляющие ее технологические процессы. Чтение типовых технологических схем обогащения.

Цель: Формирование умения выделять из технологической схемы обогащения, составляющие её технологические процессы;

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания

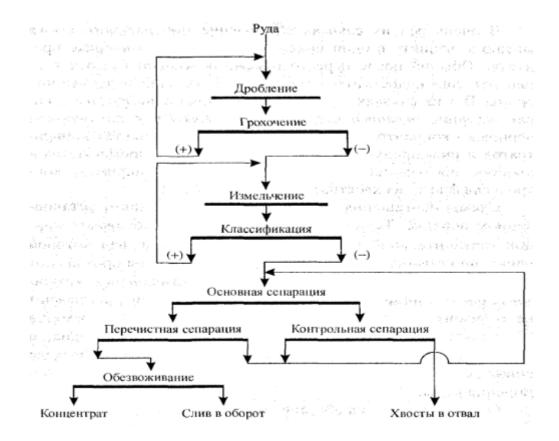
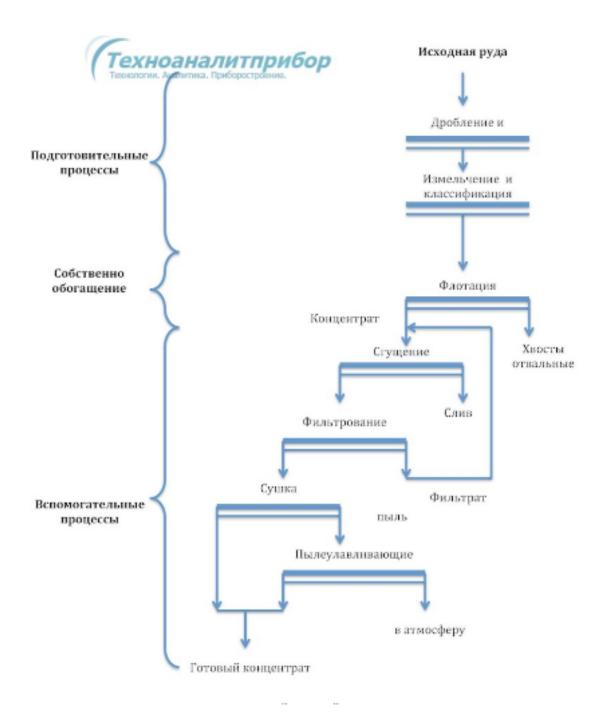
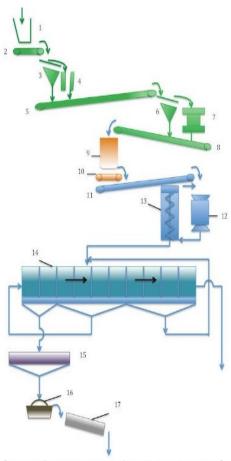




Рис. 2.2. Принципиальная схема обогащения

Задание. Выделить подготовительные процессы в схеме цепи аппаратов.

1 - бункер исходной руды; 2, 5, 8, 10, 11 - конвейеры; 3,6 - грохоты; 4 - щековая дробилка; 7 - конусная дробилка; 9 - бункер дробленой руды; 12 - мельница; 13 - спиральный классификатор; 14 - флотационная машина; 15 - сгуститель; 16 - вакуумный фильтр; 17 - сушильный барабан.

Форма отчета: Студенты представляют для проверки схему, выполненную по ситуационному заданию в рабочих тетрадях для практических работ.

Практическое занятие №2

Тема: Выполнение технологических схем

Цель: Формирование умения выполнения технологических схем обогащения

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания

Схемы обогащения изображают в определенном установленном порядке. Технологические операции изображают жирной горизонтальной линией толщиной 1-2 мм, над которой написано название операции. Движение продуктов обозначают линиями со стрелкой. При пересечении вертикальных и горизонтальных линий движения продуктов обводку показывают на горизонтальной линии. При построении схемы стремятся обеспечить минимум потоков, направляемых вертикально, и вывод всех продуктов обогащения на горизонтальную прямую внизу схемы. На рис. 2.2 представлена упрощенная схема обогащения руды.

Одна и та же схема обогащения может быть выполнена различным образом. Так, отдельные операции могут осуществляться в разных аппаратах, а одна и та же операция может выполняться в одной или нескольких машинах.

Задание составить технологическую схему по ее описанию.

Описание технологической схемы

Рядовой уголь, крупностью более 80 мм поступает на подготовительные грохочение. В результате грохочение образуется два класса 0–25мм и 25-80 мм. Класс 25-80мм поступает на дешламацию. В результате дешламации получается класс 25-80мм и класс 0-25мм. Класс 25-80мм удаляется из операции, а класс 0-25мм поступает на обесшламливание. Образуется класс 0-1мм и класс 1-25мм. Класс 1-25мм поступает на обогащение методом отсадки. В результате обогащения получается продукты концентрат и отходы. Отходы удаляются, а концентрат поступает далее на обезвоживание. В результате обезвоживания получается класс 13-25мм и класс 0-13мм. Класс 0-13мм поступает на отмучивание, где разделяется на классы 0-1мм и 1-13мм. Класс 1-13мм поступает на центрифугирование, где разделяется на классы 0-1мм и 1-13мм и удаляется из процесса обогащения.

дешламация, Класс 0-1мм операций: обесшламливание, после обогащение, обезвоживание, отмучивание и центрифугирование отправляется в наружные шламовые отстойники.

Форма отчета: Студенты представляют для проверки схему, выполненную по ситуационному заданию в рабочих тетрадях для практических работ.

Практическое занятие №3

Тема: Решение задач Основы процесса обогащение в тяжелых средах

Цель: формировать навыки определения основных характеристик процесса обогащение в тяжелых средах

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания

Основные формулы.

Сила тяжести частицы в среде

$$G_0 = V(\delta - \Delta)g$$
, H

 $G_0=V(\delta-\Delta)$ g, Н Где V- объем частицы, м 3 , $V=rac{m}{\mathcal{E}'}$

m — масса частицы, кг; δ u Δ - плотность частицы и среды, кг/м 3 $g - 9.81 \text{м/c}^2$ - ускорение свободного падения

Объемная концентрация утяжелителя в суспензии

$$c = \frac{\Delta - 1}{\delta - 1}$$
, доли единицы,

 δ и Δ - плотность суспензии и утяжелителя, m/m^3 Масса утяжелителя и воды

$$M = W_c c \delta$$
, T
 $W = W_c (1 - c)$, M³

 W_c - объем суспензии, м³

Вязкость суспензии

$$\mu_{\rm c} = \mu[1 + 1.84c + (3.3c)^9], \ \Pi \, \text{a.c.}$$

де $\mu = 0.01$ Па·с - динамический коэффициент вязкости воды.

Плотность аэросуспензии

$$\Delta = (1 - \varepsilon)\delta$$
, T/M³

где ε - коэффициент пористости суспензии;

 δ — плотность утяжелителя, т/м³.

Производительность колесных сепараторов СК и СКВ

$$Q = q \cdot B$$
, T/Ψ ,

где q - удельная нагрузка на 1 м ширины ванны сепаратора, т (см. приложение 16);

B — ширина ванны сепаратора, м (по технической характеристике).

Крупность обога- щаемого угля, мм	При содержании всплывшего или уто- иувшего продукта >75% от исходного	При содержании всплывшего или утонувшего продукта <75% от исходного	
	Нагрузка на 1 м ши- рины ванны по всплыв- шему или утонувшему продукту, т/ч	Нагрузка на 1 в ширины вапны по исходному питанию, т/ч	
50—300 25—300 13 (10)—300 13 (10)—100 13—50 6—50 6—25	85 75 65 60 50 40 35	115 100 85 80 65 55 45	

Число сепараторов СКВ и СТТ: $i = \frac{kQ}{q \cdot B}$; где k = 1, 15;

Q - количество материала, поступающего в сепараторы, т/ч.

Среднее вероятное отклонение показателя эффективности работы сепараторов СК и СТТ в зависимости от крупности обогащаемого угля в пределах [19]:25 — 300 мм: $E_{\rm p}=0.01\delta_{\rm p}+0.02$ 13-150 мм

$$E_{\rm p} = 0.015\delta_{\rm p} + 0.02$$

6-100 мм

$$E_{\rm p} = 0.025\delta_{\rm p} + 0.005$$

 $\delta_{\rm p}$ - плотность разделения, г/см 3

Производительность комплексов гидроциклонных установок КГ-2 и трехпродуктовых гидроциклон-сепараторов ГТ приведена в приложении 17.

Производительност	ь КГ-2 и Г	Прилож Т, т/ч	ение 17
Диаметр гидро- циклона, мм	ҚГ-2/50	KL-5/100	FT-3/80
500 630 (I ступень) 500 (II ступень)	40—50	80—100 —	55—60 40—45

Среднее вероятное отклонение показателя эффективности работы двухпродуктовых гидроциклонов [19]:

$$E_{\rm p} = 0.03\delta_{\rm p} + 0.015$$

Трехпродуктовых

Для первой стадии обогащения

$$E_{\rm p} = 0.04\delta_{\rm p} - 0.01$$

Для второй стадии обогащения

$$E_{\rm p} = 0.045\delta_{\rm p} - 0.015$$

где $\delta_{\rm p}$ — плотность разделения, г/см³.

Задача 120. Определить перемещение частицы угля и породы одинаковой массы m —100 г в тяжелой среде плотностью Δ =1500 кг/м³, если плотность угля δ_1 = 1300 кг/м³ и породы δ_2 = 2200 кг/м³.

Ответ: $G_{01} = -0.15$ Н (частица угля всплывет); $G_{02} = 0.31$ Н (частица породы утонет).

Задача 121. Определить объемную концентрацию утяжелителя в суспензии плотностью Δ_1 =1,5 т/м³ и Δ_2 =1,8 т/м³, если плотность утяжелителя δ = 4,6 т/м³. Ответ. c_1 = 0,14; c_2 =0,22.

Задача 122. Определить количество магнетита и воды для приготовления суспензии в количестве $W_c = 500 \text{ м}^3$, если плотность суспензии $\Delta = 1,5 \text{ т/м}^3$ и магнетита $\delta = 4,6 \text{ т/м}^3$.Ответ. M = 322 т; $W = 430 \text{ м}^3$.

Задача 123. Определить вязкость суспензии плотностью Δ =1,8 т/м³, если плотность магнетита δ = 4,6 т/м³.Ответ. 0,0015 Па·с.

Задача 124. Определить плотность аэросуспензии, если ее коэффициент пористости ε =0,6 И плотность утяжелителя δ = 4,6 т/м³.Ответ. 1,84 т/м3.

Задача 125. Рассчитать число сепараторов СКВ-32 для СК-32 (B = 3,2 м) для обогащения угля класса 10—100 мм, если содержание в исходном питании всплывшего продукта 65% и утонувшего 35%. Ответ. 256 т/ч.

Задача 126. Рассчитать число сепараторов СКВ-32 для обогащения угля класса 13—100 мм в количестве Q = 200 т/ч, если содержание всплывшего продукта в исходном питании 80%. Ответ. Один сепаратор.

Задача 127. Определить производительность сепаратора СКВД-32 для обогащения классов 25—300 и 6—25 мм, если ширина ванны для крупного класса 2000 мм и мелкого 1200 мм. (содержание всплывших и утонувших продуктов <75%. Ответ. общая Q =254 т.

Задача 128. Рассчитать число сепараторов СТТ-32 для обогащения угля класса 13—100 мм в количестве Q = 250 т/ч, если содержание всплывших и утонувших продуктов в исходном питании <75%. Ответ. Один сепаратор.

Задача 129. Определить среднее вероятное отклонение при обогащении угля класса 13-100 мм в сепараторе типа СКВ, если плотность разделения $\delta_{\rm p}$ =1,9 $_{\rm F}$ /с ${\rm M}^3$.

Ответ. 0,048.

Задача 130. Определить среднее вероятное отклонение при обогащении угля класса 6—100 мм в сепараторе типа СТТ если плотность разделения $\delta_{\rm p}$ =2 Γ /с ${\rm m}^3$.

Ответ. 0,055.

Задача 131. Рассчитать число комплексов гидроциклонов установки КГ-2/100 для обогащения угля класса 0.5—25 мм и количестве Q = 180 т/ч.

Ответ. Два комплекса.

Задача 132. Рассчитать число трехпродуктовых гидроциклонов-сепараторов ГТ-3/80 для обогащения угля класса 0,5—13 мм в количестве Q= 100 т/ч. Ответ. Два гидроциклона-сепаратора.

Задача 133. Определить среднее вероятное отклонение при обогащении угля класса 0.5—25 мм в гидроциклонной установке КГ-2, если плотность разделения $\delta_{\rm p}$ =1.8 г/см3. Ответ. 0.069.

Задача 134. Определить среднее вероятное отклонение при обогащении угля класса 0,5—13 мм в гидроциклоне-сепараторе ГТ, если плотность разделения в первой ступени $\delta_{\rm p}{}'=1,5$ г/см3 и во второй $\delta_{\rm p}{}''=1,8$ г/см3.

Otbet. $E_{p1} = 0.05$; $E_{p2} = 0.066$.

Форма отчета: Студенты представляют для проверки результаты своей работы, выполненные по заданиям в рабочих тетрадях для практических работ

Практическое занятие №4

Тема: Решение задач Основы процесса отсадки. Оборудование для отсадки **Цель:** формирование практических навыков определение технологических параметров оборудования для отсадки

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания

Основные формулы. *Ускорение частиц* при перемещении их и отсадочной постели [1]

$$a = \frac{dv_z}{dt} = \frac{\delta - \delta_{\rm cp}}{\delta} g$$
, M/c^2

где v_z —скорость вертикального перемещения частиц, м/с; δ и $\delta_{\rm cp}$ — среднединамическая плотность частиц и постели, кг/м³; $g=9.81~{\rm m/c^2}$ — ускорение свободного падения.

где $\varepsilon_{\rm o}$ — коэффициент пористости уплотнения постели;

 $v_{\text{оп}}$ — конечная скорость свободного падения частицы породы

крупностью d_{cp} , определяемой по формуле, м (v_{on} определять по числу Рейнольдса).

Mаксимальная скорость восходящего потока воды: $u_{max} = \varepsilon_{max}^2 v_{on}$, м/с

где ε_{max} — коэффициент разрыхления при максимальном разрыхлении постели.

Время начала разрыхления постели при синусоидальном цикле

отсадки:
$$t_0 = \frac{1}{\omega} \arcsin\left(\frac{\varepsilon_0}{\varepsilon_{max}}\right)^2$$
, с

где ω — частота пульсаций воды, с⁻¹.

Длительность одного цикла отсадки: $T = \frac{2\pi}{\omega} = \frac{60}{n}$ где n — число пульсаций воды, мин⁻¹.

Длительность периода разрыхления постели за один цикл отсадки

$$t_1 = 0.5T - 2t_0$$
, c

Относительное разрыхление постели: $e = \frac{h - h_0}{h_0}$

где h и h_0 — толщина разрыхленной и уплотненной постели, м.

Коэффициент разрыхления постели: $\varepsilon = \frac{\varepsilon_0 + e}{1 + e}$

Среднее значение коэффициента разрыхления при отсадке: $\varepsilon_{cp} = \frac{\varepsilon_0 + \varepsilon_{max}}{2}$

Средняя скорость расслоения частиц постели за один цикл отсадки

$$v = \frac{s_1}{T}$$

где s_1 — путь, проходимый частицами за один цикл отсадки, м

$$s_1 = \frac{\left(\delta - \delta_{cp}\right)}{\delta} g \frac{(0.5T - 2t_0)^2}{2}$$

Амплитуда пульсаций воды при синусоидальном цикле отсадки: $A = \frac{30\epsilon_0^2 v_{\text{оп}}}{2}$

Число отсадочных машин: по исходному питанию: $i = \frac{kQ}{q_1F_1}$

по отходам:
$$i = \frac{kQ_0}{q_2F_1}$$

где Q-количество угля, поступающего на отсадку, т/ч,

 Q_{o} — содержание отходов в исходном питании, т/ч;

 q_1 и q_2 — удельная производительность но исходному питанию и отходам (приложение 21), $\tau/(\tau \cdot m^2)$; F_1 — рабочая площадь сит одной отсадочной машины, m^2 . Из двух расчетных величин i_1 и i_2 принимают большую.

Удельная производительность отсадочной машины

$$q = 3.6k_0(1 - \varepsilon_0)\delta_{\rm cp}v_{\rm cp}, \, {\rm T/({\rm {\sc h}}^2)},$$

где k_0 =0,10÷0,15— коэффициент, учитывающий скорость разгрузки продуктов обогащения;

 ε_0 — коэффициент пористости уплотненной постели;

 δ_{cp} - среднединамическая плотность постели, кг/м³;

 $v_{\rm cp}$ - средняя скорость расслоения легких фракций, определяемая по формуле, м/с

Время отсадки

$$t = \frac{h}{k_0 v_{\rm cp}}, c$$

где h — толщина постели, м.

Задача 171. Определить ускорение частиц угля и породы и отсадочной постели, если среднединамическая плотность частиц угля $\boldsymbol{\delta_1}$ = 1400 кг/м³ и породы $\boldsymbol{\delta_2}$ =2000 кг/м³; среднединамическая плотность постели $\boldsymbol{\delta_{\rm cp}}$ =1580 кг/м³.

Ответ. $a_1 = -1,2$ С м/с² (частица перемещается вверх постели); $a_2 = +2,06$ м/с² (частица перемещается вниз постели).

Задача 172. Определить минимальную скорость восходящего потока воды в рабочем отделении отсадочной машины для разрыхления постели, если насыпная плотность угля $\boldsymbol{\delta_0}$ =750 кг/м³; среднединамическая плотность частиц постели $\boldsymbol{\delta_{\rm cp}}$ = 1530 кг/м³ и частиц породы $\boldsymbol{\delta_{\rm cp}}'$ =2000 кг/м³; коэффициент формы частиц f—0,5. Гранулометрический состав исходного питания приведен в табл. 38.

Таблица 38 Гранулометрический состав класса 0,5—13 мм

Ī	класс,	γ,%	A ^c %	$oldsymbol{d_{cp}}$ м
	MM			M
ŀ	6-13	13,7	26,2	
Ī	3-6	26,7	24,2	
Ī	1,3	41,0	21,6	
	0,5-1	18,6	28,5	
	Итого	100,0	24,2	

Решение.

1. Определяем средний диаметр классов по данным Табл. 38:

$$\frac{6+13}{2}$$
 и Т. Д.

По формуле определяем среднединамический диаметр масса 0,5—13 мм

$$\mathbf{d}_{\mathrm{cp}} = \frac{\gamma_1 d_1 + \gamma_2 d_2 + \dots + \gamma_n d_n}{\gamma_1 + \gamma_2 + \dots + \gamma_n}$$

- 2. Определяем коэффициент пористости по формуле $\varepsilon_{\rm o}=1-\frac{\delta_{\rm o}}{\delta_{\rm cp}}$
- 3. Определяем конечную скорость свободного падения частиц породы размером d_{cp} по числу Рейнольдса:

$${\rm Re}^2 \psi = 5134 \cdot 10^6 d^3 (\delta - \Delta); {\rm Re} = 1100; {\rm K}_{\rm p} = 0.35$$

$$v_0 = \frac{K \mu {\rm Re}}{d_2 \Delta}$$

4. Минимальную скорость восходящего потока воды определяем по формуле

$$u_0 = \varepsilon_0^2 v_0$$

Задача 173. Определить минимальную скорость восходящего потока воды в рабочем отделении отсадочной машины для разрыхления постели, если насыпная плотность угля $\delta_0 = 800 \, \text{кг/м}^3$, среднединамическая плотность частиц постели $\delta_{\rm cp} = 1665 \, \text{кг/m}^3$ и частиц породы $\delta_{\rm cp}' = 1900 \, \text{кг/m}^3$, среднединамический диаметр частиц породы $d_{\rm cp} = 50 \, \text{мм}$, коэффициент формы частиц f = 0.5. Ответ. $0.124 \, \text{м/c}$.

Задача 174. Толщина уплотненной постели h_0 =400 мм, толщина разрыхленной постели h= 436 мм. Определить относительное разрыхление постели. Ответ. 0,09.

Задача 175. Определить коэффициент пористости разрыхленной постели, если коэффициент пористости уплотненной постели $\varepsilon_0 = 0.51$, относительное разрыхление постели e = 0.1.0 твет. 0.55.

Задача 176. Определить максимальную скорость восходящего потока воды рабочем отделении отсадочной машины если среднединамический диаметр исходного класса среднединамическая плотность породы $\delta_{\rm cn} =$ частиц коэффициент пористости уплотненной постели ε_0 =0,5, максимальное относительное разрыхление постели $e_{max} = 0.12$, коэффициент формы частиц f=0,5.

Решение.

1. Определяем максимальный коэффициент разрыхления по формуле

$$\varepsilon_{max} = \frac{0.5 + 0.12}{1 + 0.12}$$

2. Определяем конечную скорость свободного падения частиц по числу Рейнольдса:

Re²
$$\psi$$
 = 5134 · 10⁶ d^3 (δ – Δ); Re = 2000; K_p = 0,35; $v_{\text{oπ}} = \frac{K\mu\text{Re}}{d_3\Delta}$

Максимальную скорость восходящего потока воды определяем по формуле: $u_{max} = \varepsilon_{max}^2 v_{\text{оп}}$

Задача 177. Определить максимальную скорость восходящего потока воды в рабочем отделении отсадочной машины, $d_{cp}=55$ среднединамический класса диаметр исходного $\delta_{\rm cn}=2100$ Kr/M³, среднединамическая плотность частиц породы коэффициент пористости уплотненной постели ε_0 =0,52, максимальное относительное разрыхление постели ε_{max} = 0,13 коэффициент формы частиц f=0,5. Ответ. 0,127 м/с.

Задача 178. Определить время начала разрыхления постели при

синусоидальном цикле отсадки, если коэффициент уплотненной постели $\varepsilon_0=0.52$ максимальное относительное разрыхление постели e_{max} = 0,12, число пульсаций воды n=50 мин⁻¹.

Решение.

- 1. Определяем максимальный коэффициент разрыхления постели по формуле: $\varepsilon_{max} = \frac{\varepsilon_0 + e}{1 + e}$; Определяем частоту пульсаций воды $\omega =$

2. Время начала разрыхления определяем по формуле
$$t_0 = \frac{1}{\omega} \arcsin\left(\frac{\varepsilon_0}{\varepsilon_{max}}\right)^2; \text{откуда } \sin 5,23 t_0 = \left(\frac{\varepsilon_0}{\varepsilon_{max}}\right)^2; \ t_0 = \frac{\sin 56^0}{5,23}, \ \text{c}$$

Задача 179. Определить длительность разрыхления постели за один цикл отсадки, если коэффициент пористости уплотненном постели ε_0 = 0,5, максимальный коэффициент разрыхления постели $\varepsilon_{max} = 0,58,$ число пульсаций воды n=45 мин⁻¹.Ответ. 0,3 с.

Задача 180. Определить среднюю скорость расслоения частиц постели, если насыпная плотность исходною питания $\delta_0 = 720$ кг/м³, максимальное относительное разрыхление постели $e_{max}=0,12$, число пульсаций воды в отсадочной машине n = 50 мин⁻¹.

Фракционный состав исходного питания приведен в табл. 39 Решение.

1. Определяем среднединамическую плотность по формуле и данным табл.39

Постели:

$$\delta_{\rm cp} = \frac{\gamma_1 \delta_1 + \gamma_2 \delta_2 + ... \gamma_n \delta_n}{\gamma_1 + \gamma_2 ... + \gamma_n}, \ {\rm K} \Gamma / {\rm M}^3$$

частиц легкой фракции (δ <1,5 г/см³):

$$\delta_{<1,5} = \frac{\gamma_1 \delta_1 + \gamma_2 \delta_2 + \dots \gamma_n \delta_n}{\gamma_1 + \gamma_2 \dots + \gamma_n}$$

частиц тяжелой фракции (
$$\delta > 1,8$$
 г/см³)
$$\delta_{<1,5} = \frac{\gamma_1 \delta_1 + \gamma_2 \delta_2 + \dots \gamma_n \delta_n}{\gamma_1 + \gamma_2 \dots + \gamma_n}$$

Таблица 39 Определяем

Фракционный состав исходного питания			
Плотность фракции, г/см ³	γ. %	A ^c , %	$\delta_{\rm cp} \Gamma / {\rm cm}^3$
1,2-1,3	57,3	4,6	
1,3-1,4	8,9	9,6	
1,4-1,5	3,2	16,1	
1,5-1,6	2,5	29,1	
1,6-1,8	1,9	36,5	
1,6-2,6	26,2	5,5	
Итого	100,	2,1	

коэффициент разрыхления: уплотненной постели по формуле: $\varepsilon_0 = 1 - \frac{\delta_0}{\delta_{cn}}$ максимальной разрыхленной постели по формуле:

$$\varepsilon_{max} = \frac{\varepsilon_0 + e_{max}}{1 + e_{max}}$$

Определяем время начала разрыхления постели частота пульсаций

воды
$$\omega=\frac{\pi n}{30}$$
; $t_0=\frac{1}{\omega}\arcsin\left(\frac{\varepsilon_0}{\varepsilon_{max}}\right)^2$; откуда $\sin 5.23t_0=\left(\frac{\varepsilon_0}{\varepsilon_{max}}\right)^2$; $t_0=\frac{\sin 56^040'}{5.23}$, с

время одного цикла отсадки $T = \frac{60}{n}$

Определяем путь, проходимый частицами за один цикл отсадки, и среднюю скорость расслоения по формулам:

частиц легкой фракции:
$$s_1 = \frac{(\delta - \delta_{cp})}{\delta} g \frac{(0,5T-2t_0)^2}{2}$$
; $v_{<1,5} = \frac{s_1}{T}$, м/с частиц тяжелой фракции: $s_1 = \frac{(\delta - \delta_{cp})}{\delta} g \frac{(0,5T-2t_0)^2}{2}$; $v_{>1,8} = \frac{s_1}{T}$, м/с

Задача 181. Определить амплитуду пульсаций воды в отсадочной машине крупного угля, если число пульсаций n=36 с⁻¹, среднединамическая плотность частиц породного слоя постели $\delta_{\rm cp}=2200$ кг/м³, коэффициент пористости породного слоя $e_0=0,52$, коэффициент формы частица f=0,5.

Гранулометрический состав исходного питания приведен в табл. 40.

Класс, мм	γ %	$d_{\rm cp} \Gamma / {\rm cm}^3$
50-100	25,2	
25-50	26,4	
13-25	48,4	
Итого	100	

Решение.

- 1. Определяем среднединамический диаметр частиц по формуле (6) и данным табл. 40: $d_{cp} = \frac{\gamma_1 d_1 + \gamma_2 d_2 + ... + \gamma_n d_n}{\gamma_1 + \gamma_2 + ... + \gamma_n}$
- 2. Определяем конечную скорость свободного падения частиц породы по числу Рейнольдса:

Re²
$$\psi$$
 = 5134 · 10⁶ d^3 (δ – Δ);Re = 45000; K_p = 0,35; $v_{oπ} = \frac{K\mu Re}{d_3\Delta}$

3. Определяем амплитуду пульсаций воды по формуле $A = \frac{30 \varepsilon_0^2 v_{\text{оп}}}{\pi n}$

Таблица 41

Класс, мм	γ %	$d_{\rm cp} \Gamma / { m cm}^3$
6-13	41,5	
3-6	20,0	
1-3	16,3	
0,5-1	22,2	
Итого	100	-

табл. 41. Ответ. 10 мм.

Задача 182. Определить амплитуду пульсаций воды в отсадочной машине мелкого угля, если число пульсаций n=45 мин $^{-1}$, среднединамическая плотность частиц породного слоя e_0 =0,51 коэффициент формы частиц f=0,5. Гранулометрический состав исходного питания приведен в

Задача 183. Рассчитать число отсадочных машин ОМ-8-1 для обогащения крупного класса в количестве Q=250 т/ч, если содержание фракции >1,8 г/см³ в исходном питании 20%; категория обогатимости

угля легкая. Решение.

Определяем число машин по исходному питанию по формуле: $i = \frac{kQ}{q_1F_1}$ по отходам: $i = \frac{kQ_0}{q_2F_1}$

- 1. По приложениям 21 и 22 находим $q_1 = 18 \text{ т/(ч-м}^2)$, $F_1 = 8 \text{ м}^2$.
- 2. Определяем число машин по отходам. Содержание отходов в исходном: $\mathbf{i} = \frac{\mathbf{kQ_0}}{\mathbf{q_2F_1}}$; $\mathbf{Q_0} = \frac{20*250}{100}$; $\mathbf{q_2} = 7\text{т/(ч·м²)}$

Задача 184. Рассчитать число отсадочных машин ОМ-12—1 пли обогащения крупного класса в количестве $Q=300\,\mathrm{T/Y}$, или содержание фракции >1,8 г/см³ в исходном питании 16%, категория обогатимости угля средняя. Ответ. Две машины.

Задача 185. Рассчитать число отсадочных машин ОМ-12—І 1ля обогащения мелкого угля в количестве $Q=200\,$ т/ч, если содержание фракции >1,8 г/см³ в исходном питании 30%, категория обогатимости угля средняя. Ответ. Две машины.

Задача 186. Рассчитать число отсадочных машин ОМ-18—1 для обогащения мелкого класса в количестве Q=300 т/ч, если содержание фракции >1,8 г/см³ в исходном питании 32%, категория обогатимости угля трудная. Ответ. Две машины.

Задача 187. Рассчитать число отсадочных машин ОМ-18—1 11я обогащения неклассифицированного угля в количестве Q=350 т/ч, если содержание фракции >1,8 г/см³ в исходном штанин 28%, категория обогатимости угля легкая. Ответ. Одна машина.

Задача 188. Рассчитать число отсадочных машин ОМА-10 .тля обогащения антрацита класса 6—250 мм в количестве Q=190 т/ч, если содержание фракции >2,0 г/см³ в исходном питании 20%, категория обогатимости антрацита легкая. Ответ. Одна машина

Задача 189. Рассчитать число отсадочных машин ОМ-24 для обогащения мелкого класса в количестве Q=400 т/ч, если содержание фракции >1,8 г/см³ в исходном питании 20%, категория обогатимости угля легкая. Ответ. Одна машина.

Задача 190. Определить удельную производительность отсадочной машины и время отсадки, если средняя скорость расслоения легких фракций $v_{\rm cp}=0{,}039$ м/с, среднединамическая плотность частиц постели $\delta_{\rm cp}$ — 1550 кг/м³, коэффициент пористости уплотненной постели $\varepsilon_{\rm o}=0{,}52$, толщина постели h=350 мм, коэффициент скорости разгрузки продуктов обогащения $k_{\rm o}=0{,}1$.

Решение.

1. Определяем удельную производительность машины по формуле

$$q = 3.6k_0(1 - \varepsilon_0)\delta_{\rm cp}v_{\rm cp}, \, {\rm T/(4\cdot M^2)}; \, t = \frac{h}{k_0v_{\rm cp}}, \, {\rm c}$$

Задача 191. Определить удельную производительность отсадочной машины и время отсадки, если средняя скорость расслоения легких

фракций $v_{\rm cp}$ =0,055 м/с, среднединамическая плотность частиц постели $\delta_{\rm cp}$ =1590 кг/м³, коэффициент пористости уплотненной постели $\varepsilon_{\rm o}$ =0,53, толщина постели h=400 мм, коэффициент скорости разгрузки продуктов обогащения $k_{\rm o}$ = 0,1.

Ответ. $q = 14,7 \text{ T/(ч*м}^2); t = 73 \text{ c.}$

Задача 192. Определить выход продуктов обогащения отсадочной машины, если зольность исходного питания $A_{\mu}^{c}=23,8\%$ зольность концентрата $A_{\kappa}^{c}=5,0\%$ и отходов $A_{0}^{c}=78,2\%$.

У казание, Использовать формулы баланса продуктов обогащения **Форма отчета:** Студенты представляют для проверки результаты своей работы, выполненные по заданиям в рабочих тетрадях для практических работ

Практическое занятие №5

Тема: Решение задач Оборудование для флотации

Цель: формирование практических навыков определения технологических параметров при расчете оборудования для флотации

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания

Основные формулы. Коэффициент аэрации пульпы

$$\alpha = \frac{V_1}{W_{\Pi} + V_1}$$

V—количество засасываемого воздуха во флотационную машину, м 3 /ч;

 W_n — производительность машины по пульпе, м³/ч.

Окружная скорость импеллера флотационной машины

$$v = \frac{\pi Dn}{60}$$

D—диаметр импеллера, м;

n — частота вращения импеллера, мин $^{-1}$.

Производительность флотационной машины: по пульпе

$$W_{\rm II} = \frac{60 KnV}{t} \, {\rm M}^3/{\rm q}$$

по твердому:

$$Q = \frac{60KnV\delta}{(1+p\delta)t} \, ^{\mathrm{T}}/_{\mathrm{Y}}$$

 $K=1-\alpha=0.65\div0.7$ коэффициент, учитывающий аэрацию пульпы;

n — число камер;

V — объем одной камеры, м³

 δ — плотность шлама, т/м³;

р — отношение Ж:Т в пульпе

t— время флотации, мин.

Число флотационных машин

$$i = \frac{kQ(1+p\delta)t}{60KnV\delta}$$

Количество твердого в пульпе

$$Q = \frac{W\delta}{1 + p\delta}^{\mathrm{T}}/_{\mathrm{Y}}$$

Число агрегатов АКП «Каскад» для подготовки пульпы перед флотацией

$$i = \frac{kW}{W_1}$$

где W— количество пульпы, поступающей на подготовку $^{\wedge}$ м 3 /ч;

 W_1 — производительность одного агрегата, м³/ч.

Задача 225. Определить коэффициент аэрации пульпы во флотационной машине, если количество засасываемого воздуха в машину $V_1=200~{\rm m}^3/{\rm y}$, производительность машины по пульпе $W_{\rm n}$ =450 ${\rm m}^3/{\rm y}$. Ответ. 0,31.

Задача 226. Определить количество засасываемого воздуха во флотационную машину, если ее производительность по пульпе $W_{\rm n} = 400 \, {\rm m}^3/{\rm y}$, коэффициент аэрации пульпы $\alpha a = 0.35$. Ответ. 215 ${\rm m}^3/{\rm y}$.

Задача 227. Определить окружную скорость импеллера флотационной машины ФМУ-63, если диаметр D = 400 мм и частота вращения n = 735 мин⁻¹. Ответ. 6,15 м/с.

Задача 228. Определить окружную скорость импеллера флотационной машины МФУ2-63, если диаметр импеллера D = 400 мм и частота вращения n = 600 мин⁻¹.

Ответ. 5,02 м/с.

Задача 229. Определить время флотации в шестикамерной Флотационной машине ФМУ-63, если ее производительность по пульпе $W_n = 165 \text{ м}^3/\text{ч}$. Ответ. 9 мин.

Задача 230. Определить время флотации в шестикамерной 4 флотационной машине МФУ2-63, если ее производительность щ пульпе W_n =250 м³/ч. Ответ. 6.3 мин.

Задача 231. Определить производительность по пульпе шестикамерной флотационной машины МФУ2-63, если время флотации t - 7 мин. **Ответ. 227** м³/ч.

Задача 232. Определить производительность шестикамерной флотационной машины ФМУ-63, если плотность твердого шлама δ =1,5 т/м³, отношение Ж:Т в пульпе p=5, время флотации t =8,5 мни; коэффициент, учитывающий аэрацию пульпы K=0,65.

Ответ. 28,6 т/ч.

Задача 233. Определить производительность шестикамерной флотационной машины МФУ2-63, если плотность шлама δ =1,4 т/м³; отношение Ж:Т в пульпе р= 6; время флотации t =6 мин; коэффициент, учитывающий аэрацию пульпы, K=0,7.

Ответ. 39,4 т/ч.

Задача 234. Определить производительность шестикамерной пневмомеханической машины $\Phi\Pi M Y$ -63, если плотность твердого шлама δ

 $=1,5\,$ т/м³; отношение Ж:Т в пульпе p=8; время флотации $t=2,6\,$ мин; коэффициент, учитывающий аэрацию пульпы, K=0,7. Ответ. 70 т/ч.

Задача 235. Рассчитать число шестикамерных флотационных машин МФУ2-63 для флотации шлама в количестве Q - 100 т/ч, если плотность твердого шлама $\delta = 1,5$ т/м³; отношение Ж: Т в пульпе p=8; время флотации t = 6 мин; коэффициент, учитывающий аэрацию пульпы, K = 0,7. Ответ. Четыре машины. Задача 236. Рассчитать число шестикамерных флотационных машин ФПМУ-63 для флотации шлама в количестве Q = 180 т/ч, если плотность твердого шлама $\delta = 1,5$ т/м³; отношение Ж: Т в пульпе p=8; время флотации t = 2,6 мин; коэффициент, учитывающий аэрацию пульпы, K = 0,7. Ответ. Три машины.

Задача 237. На флотацию поступает пульпа в количестве $W=1000~{\rm m}^3/{\rm y}$ с отношением Ж:T=p=7. Определить количество твердого в пульпе, если его плотность $\delta=1400~{\rm kr/m}^3$.

Ответ. 130 т/ч.

Задача 238. Рассчитать число агрегатов АКП-1,6 для подготовки пульпы перед флотацией в количестве $W=1200~{\rm m}^3/{\rm q}$, если производительность агрегата $W_1=1600~{\rm m}^3/{\rm q}$. Ответ. Один агрегат.

Задача 239. Определить выход продуктов флотации, если зольность флотоконцентрата A^c_{κ} =8,5%, отходов A^c_{o} = 76,2% и исходного шлама A^c_{ω} =22,0%.

Указание. См. задачу 192.Ответ. γ_{κ} =80%; γ_{0} =20%.

Форма отчета: Студенты представляют для проверки результаты своей работы, выполненные по заданиям в рабочих тетрадях для практических работ

Практическое занятие № 6

Тема: Составление технологических схем обогащения

Цель: формировать практические навыки выделения из технологической схемы обогащения, составляющие её технологические процессы

Оборудование: раздаточный материал

Методические указания: изучить теоретический материал

Ход выполнение: выполнить задания

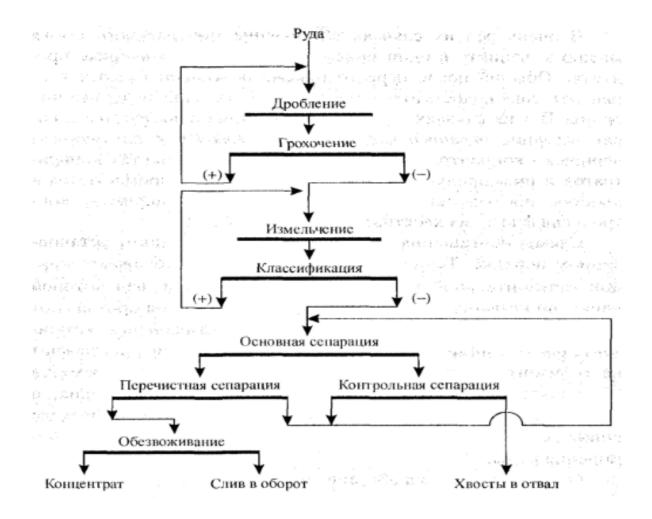
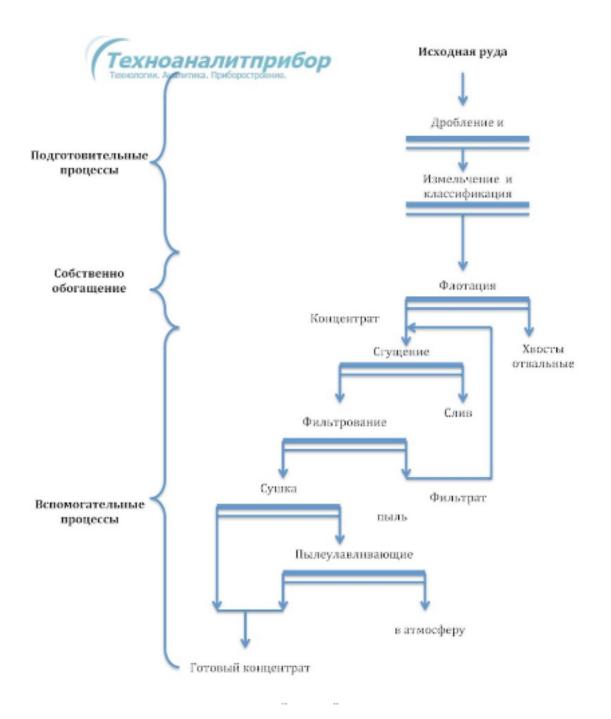
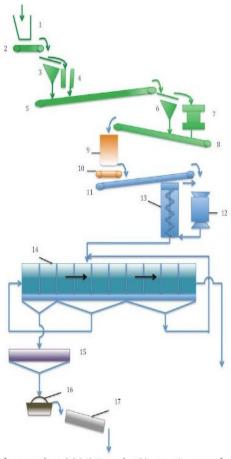




Рис. 2.2. Принципиальная схема обогащения

Задание. Выделить основные процессы в схеме цепи аппаратов.

1 - бункер исходной руды; 2, 5, 8, 10, 11 - конвейеры; 3,6 - грохоты; 4 - щековая дробилка; 7 - конусная дробилка; 9 - бункер дробленой руды; 12 - мельница; 13 - спиральный классификатор; 14 - флотационная машина; 15 - сгуститель; 16 - вакуумный фильтр; 17 - сушильный барабан.

Форма отчета: Студенты представляют для проверки схему, выполненную по ситуационному заданию в рабочих тетрадях для практических работ, также необходимо ответить на контрольные вопросы, приведенные ниже.

Контрольные вопросы

- 1. Какие типы технологических схем Вы знаете?
- 2. Что такое схема цепи аппаратов.
- 3. Что означает качественная схема технологического процесса?
- 4. Как Вы можете охарактеризовать качественно-количественную схему обогащения?
- 5. Что означает водно-шламовая схема?
- 6. Какие характеристики можно получить, следуя технологическим схемам?

4. ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

4.1 Печатные издания

Основные:

О-1. Клейн, М. С. Опробование и контроль процессов обогащения: учебное пособие / М. С. Клейн, Т. Е. Вахонина. — Кемерово: КузГТУ имени Т.Ф. Горбачева, 2022. — 148 с.

- О-2.Суслина Л. А., Обогащение полезных ископаемых: учебное пособие / Л. А. Суслина. Кемерово: КузГТУ имени Т.Ф. Горбачева, 2020. 194 с.
- О-3.Обогащение и переработка полезных ископаемых: практикум: учебное пособие / П. В. Цыбуленко, С. Г. Оника, И. М. Ковалева, Н. Э. Паливода. Минск: БНТУ, 2020. 84 с.
- О-4. Коннова, Н. И. Обогащение и переработка минерального и техногенного сырья: учебник: в 2 частях / Н. И. Коннова, Э. А. Рудницкий. Красноярск: СФУ, 2021 Часть 1: Основы обогащения 2021. 222 с.

Дополнительные:

- Д-1. Абрамов, А.А. Переработка, обогащение и комплексное использование твердых полезных ископаемых Обогатительные процессы и аппараты, Том 1:учебник/ А.А. Абрамов. М.: Горная книга, 2008. -470 с.
- Д-2. Абрамов, А.А. Переработка, обогащение и комплексное использование твердых полезных ископаемых, Технология обогащения полезных ископаемых, Том 2: учебник/ А.А. Абрамов. М.: Горная книга, 2004.-510 с.
- Д-3. Абрамов, А.А. Флотационные методы обогащения: учебник/ А.А. Абрамов. М.: изд-во МГГУ, изд-во Горная книга, 2008.-710 с.
- Д-4. Авдохин, В.М. Обогащение углей. Т.1. Процессы и машины: учебник/ В.М. Авдохин. М.: Горная книга, 2012. 424 с.
- Д-5.Авдохин, В.М. Обогащение углей. Т.2. Технологии: учебник/ В.М. Авдохин.- М.: Горная книга, 2012.-475 с.
- Д-6.Авдохин В.М.Основы обогащения полезных ископаемых. Технологии обогащения полезных ископаемых, Том 2: учебник / В.М. Авдохин .- М.: Горная книга, 2018.-420 с.
- Д-7. Авдохин, В.М. Основы обогащения полезных ископаемых. Обогатительные проце, Том 1: учебник / В.М. Авдохин .- М.: Горная книга, 2017.-312 с.
- Д-8.Артюшин, С.П. Сборник задач по обогащению углей :учебное пособие/ С.П. Артюшин.-М.: Недра,1979-223 с.
- Д-9.Артюшин, С.П. Обогащение углей :учебное пособие/ С.П. Артюшин.-М.: Недра,1975-384с.
- Д-10.Практикум по обогащению полезных ископаемых :учебное пособие/ под ред. Н.Г. Бедраня.- М.: Недра, 1991.- 526 с.
- Д-11.Гройсман, С.И. Сборник задач и упражнений по обогащению углей: учебное пособие/ С.И. Гройсман.-М.: Недра, 1992.- 239 с.
- Д-12.Гройсман, С.И. Технология обогащения углей: учебник/ С.И. Гройсман.- М.: Недра, 1987.- 357 с.
- Д-13. Моршинин, В.М. Основы обогащения полезных ископаемых: учебник/ В.М. Моршинин.-М.: Недра, 1983.- 190 с.

Электронные издания (электронные ресурсы):

1. Клейн, М.С.Технология обогащения полезных ископаемых: учебное пособие/ М.С. Клейн, Т.Е Вахонина.- Кемерово: КузГТУ, 2017.- 193 с.— ЭБС ЛАНЬ.

ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЕННЫХ В МЕТОДИЧЕСКИЕ УКАЗАНИЯ

№ изменения, дата внесения, № страницы с изменением			
Было	Стало		
Основание:			
Подпись лица, внесшего изменения			