ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ЧЕРЕМХОВСКИЙ ГОРНОТЕХНИЧЕСКИЙ КОЛЛЕДЖ ИМ. М.И. ШАДОВА»

Утверждаю: Директор ГБПОУ «ЧГТК им. М.И. Щадова» С.Н. Сычев «26» мая 2025 г.

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

ОП.04 Техническая механика

программы подготовки специалистов среднего звена

по специальности СПО

13.02.13 Эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям)

Комплект контрольно-оценочных средств разработан на основе ФГОС СПО по специальности 13.02.13 Эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) программы учебной дисциплины Техническая механика

Разработчик:

ГБПОУ «ЧГТК им. <u>М.И. Щадова»</u> (место работы)

преподаватель
<u>специальных дисциплин</u>
(занимаемая должность)

<u>Н.А. Пилипченко</u> (инициалы, фамилия)

Одобрено на заседании цикловой комиссии:

«Горных дисциплин»

Протокол №6 от «04» марта 2025 г.

Председатель ЦК: Н.А. Жук

Одобрено Методическим советом колледжа

Протокол №4 от «05» марта 2025 г.

Председатель МС: Е.А. Литвинцева

СОДЕРЖАНИЕ

CTP.

1.ПАСПОРТ КОМПЛЕКТА КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ	_4
2.РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
3.ФОРМЫ И МЕТОДЫ ОЦЕНИВАНИЯ	5
4.КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ	5
5.КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ КАЧЕСТВА	
ЗНАНИЙ	49
6.КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ	
АТТЕСТАЦИИ	59
ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ К КОМПЛЕКТУ КОНТРОЛЬНО-	
ОЦЕНОЧНЫХ СРЕДСТВ	72

1. ПАСПОРТ КОМПЛЕКТА КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

В результате освоения учебной дисциплины *Техническая механика* обучающиеся должны обладать предусмотренными ФГОС СПО по специальности *13.02.13* Эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) общими и профессиональными компетенциями:

ПК 1.3. Осуществлять оценку производствено — технических показателей работы электрического и электромеханического оборудования.

В процессе освоения дисциплины студент должен овладевать общими компетенциями (ОК):

- ОК 4. Эффективно взаимодействовать и работать в коллективе и команде;
- ОК 7. Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях;

Учебным планом колледжа предусмотрена промежуточная аттестация по учебной дисциплине *Техническая механика* в форме экзамена.

2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

В результате аттестации осуществляется комплексная проверка следующих умений и знаний, которые формируют общие и профессиональные компетенции:

Базовая часть

умения:

- определять напряжения в конструкционных элементах;
- определять передаточное отношение;
- проводить расчет и проектировать детали и сборочные единицы общего назначения;
- проводить сборочно-разборочные работы в соответствии с характером соединений деталей и сборочных единиц;
- производить расчеты на сжатие, срез и смятие;
- производить расчеты элементов конструкций на прочность, жесткость и устойчивость;
- собирать конструкции из деталей по чертежам и схемам;
- читать кинематические схемы;

знания:

- виды движений и преобразующие движения механизмы;
- виды износа и деформаций деталей и узлов;
- виды передач; их устройство, назначение, преимущества и недостатки, условные обозначения на схемах;
- кинематику механизмов, соединения деталей машин, механические передачи, виды и устройство передач;
- методику расчета конструкций на прочность, жесткость и устойчивость при различных видах деформации;
- методику расчета на сжатие, срез и смятие;
- назначение и классификацию подшипников;

- характер соединения основных сборочных единиц и деталей;
- основные типы смазочных устройств;
- типы, назначение, устройство редукторов;
- трение, его виды, роль трения в технике;
- устройство и назначение инструментов и контрольно-измерительных приборов, используемых при техническом обслуживании и ремонте оборудования.

Вариативная часть

умения:

- оформлять технологическую и техническую документацию в соответствии с действующей нормативной базой;
- приводить несистемные величины измерений в соответствие с действующими стандартами и международной системой единиц СИ;
 - -производить расчет на растяжение и сжатие, кручение и изгиб;

знания:

- основные понятия и определения метрологии, стандартизации, сертификации;
- терминологию и единицы измерения величин в соответствии с действующими стандартами и международной системой единиц СИ; -методику расчета конструкций на растяжение и сжатие, кручение и изгиб

3. ФОРМЫ И МЕТОДЫ ОЦЕНИВАНИЯ

Контроль и оценка знаний, умений, а также сформированность общих и профессиональных компетенций осуществляются с использованием следующих форм и методов:

- выполнение и защита практических работ;
- выполнение самостоятельной работы.

Формой промежуточной аттестации по учебной дисциплине является экзамен.

Предметом оценки служат умения и знания, предусмотренные ФГОС по дисциплине Техническая механика.

4. КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ

- Раздел 1. Основы метрологии, стандартизации и сертификации
- **Тема 1.1.** Общие сведения о метрологии, стандартизации и сертификации **Вариант 1.**
- 1. Организация деятельности стандартизации в крае и области осуществляется посредством:
- а) региональной стандартизации;
- б) административно-территориальной стандартизации;
- в) национальной стандартизации.
- 2. Международный стандарт может не приниматься за основу национального стандарта по причине:
- а) географических особенностей;
- б) экономических особенностей;

- в) социальных особенностей.
- 3. Обязательные требования стандартов устанавливаются к:
- а) методам контроля;
- б) потребительским характеристикам;
- в) безопасности.
- 4. Патентную чистоту объекта определяют на стадии:
- а) разработки технического задания;
- б) разработки проекта стандарта;
- в) принятия стандарта.
- 5. Пересмотр стандарта следует рассматривать как:
- а) внесение дополнения в содержание;
- б) упразднение отдельных частей стандарта;
- в) разработку нового стандарта.

Вариант 2

- 1. Организация и принципы стандартизации в РФ определены:
- а) Законом «О защите прав потребителей»,
- б) Законом «О стандартизации»,
- в) сертификатом соответствия.
 - 2. Госнадзор контролирует на предприятии:
- а) соблюдение требований государственных стандартов; сертификацию продукции,
- в) соблюдение обязательных требований государственных стандартов.
 - 3. Цели стандартизации:
- а) установление обязательных норм и требований,
- б) установление рекомендуемых норм и требований,
- в) установление обязательных и рекомендуемых норм и требований,
- г) устранение технических барьеров в международной торговле.
 - 4. Международные стандарты могут применяться в России:
- а) да,
- б) нет.
 - 5. Обязательный для выполнения нормативный документ это:
- а) национальный (государственный) стандарт;
- б) технический регламент;
- в) стандарт предприятия.
 - 6. К функциям технических комитетов по стандартизации относится:
- а) определение концепции стандартизации в своей отрасли,
- б) привлечение предприятий (организаций) к обязательному участию в стандартизации.
 - 7. Выполняет функцию национального информационного центра ИСО/МЭК в России:
- а) Госстандарт РФ,
- б) ВНИИКИ,
- в) Издательство стандартов.
 - 8. Объектами стандартизации являются:
- а) государственные стандарты,
- б) продукция,

- в) процессы и услуги,
- г) продукция, процессы и услуги.
 - 9. Предварительный стандарт это:
- а) временный документ,
- б) самостоятельный стандарт.
 - 10. Важнейшие структурные элементы государственной системы стандартизации:
- а) комплекс стандартов,
- б) комплекс стандартов и ТУ,
- в) комплекс стандартов,
- ТУ и сертификация продукции.
 - 11. Определение конкретных объектов, которые признаются нецелесообразными для дальнейшего производства и применения это:
- а) селекция,
- б) типизация,
- в) систематизация,
- г) симплификация.
 - 12. Стандартизация в области защиты окружающей среды проводится на основе:
- а) национального законодательства по экологии,
- б) требований движения «зеленых»;
- в) по инициативе обществ защиты прав потребителей.
 - 13.К законодательной метрологии относится:
- а) поверка и калибровка средств измерений,
- б) магазин мер,
- в) создание новых единиц измерения.
 - 14. Международная организация по стандартизации:
- a) ИСО,
- б) МЭК,
- в) ИНФКО.

Метрология

- 1. Дайте определение метрологии:
- А. наука об измерениях, методах и средствах обеспечения их единства и требуемой точности
- Б. комплект документации описывающий правило применения измерительных средств
- В. система организационно правовых мероприятий и учреждений созданная для обеспечения единства измерений в стране
- Γ . A+B
- Д. все перечисленное верно
- 2. Что такое измерение?
- А. определение искомого параметра с помощью органов чувств, номограмм или любым другим путем
- Б. совокупность операций, выполняемых с помощью технического средства, хранящего единицу величины, позволяющего сопоставить измеряемую

величину с ее единицей и получить значение величины

- В. применение технических средств в процессе проведения лабораторных исследований
- Г. процесс сравнения двух величин, процесс, явлений и т. д.
- Д. все перечисленное верно
- 3. Единство измерений:
- А. состояние измерений, при котором их результаты выражены в узаконенных единицах, а погрешности известны с заданной вероятностью и не выходят за установленные пределы
- Б. применение одинаковых единиц измерения в рамках ЛПУ или региона
- В. применение однотипных средств измерения (лабораторных приборов) для определения одноименных физиологических показателей
- Г. получение одинаковых результатов при анализе пробы на одинаковых средствах измерения
- Д. все перечисленное верно
- 4. Погрешностью результата измерений называется:
- А. отклонение результатов последовательных измерений одной и той же пробы
- Б. разность показаний двух разных приборов полученные на одной той же пробе
- В. отклонение результатов измерений от истинного (действительного) значения
- Г. разность показаний двух однотипных приборов полученные на одной той же пробе
- Д. отклонение результатов измерений одной и той же пробы с помощью различных методик
- 5. Правильность результатов измерений:
- А. результат сравнения измеряемой величины с близкой к ней величиной, воспроизводимой мерой
- Б. характеристика качества измерений, отражающая близость к нулю систематических погрешностей результата
- В. определяется близость среднего значения результатов повторных измерений к истинному (действительному) значению измеряемой величины Г. "Б"+"В"
- Д. все перечисленное верно
- 6. К мерам относятся:
- А. эталоны физических величин
- Б. стандартные образцы веществ и материалов
- В. все перечисленное верно
- 7. Стандартный образец- это:
- А. специально оформленный образец вещества или материала с метрологически аттестованными значениями некоторых свойств
- Б. контрольный материал полученный из органа проводящего внешний контроль качества измерений
- В. проба биоматериала с точно определенными параметрами

- Г. все перечисленное верно
- 8. Косвенные измерения это такие измерения, при которых:
- А. применяется метод наиболее быстрого определения измеряемой величины
- Б. искомое значение величины определяют на основании результатов прямых измерений других физических величин, связанных с искомой известной функциональной зависимостью
- В. искомое значение физической величины определяют путем сравнения с мерой этой величины
- Г. искомое значение величины определяют по результатам измерений нескольких физических величин
- Д. все перечисленное верно
- 9. Прямые измерения это такие измерения, при которых:
- А. искомое значение величины определяют на основании результатов прямых измерений других физических величин, связанных с искомой известной функциональной зависимостью
- Б. применяется метод наиболее точного определения измеряемой величины
- В. искомое значение физической величины определяют непосредственно путем сравнения с мерой этой величины
- Г. градуировочная кривая прибора имеет вид прямой
- Д. "Б"+"Г"
- 10. Статические измерения это измерения:
- А. проводимые в условиях стационара
- Б. проводимые при постоянстве измеряемой величины
- В. искомое значение физической величины определяют непосредственно путем сравнения с мерой этой величины
- Г. "А"+"Б"
- Д. все верно
- 11. Динамические измерения это измерения:
- А. проводимые в условиях передвижных лабораторий
- Б. значение измеряемой величины определяется непосредственно по массе гирь последовательно устанавливаемых на весы
- В. изменяющейся во времени физической величины, которые представляется совокупностью ее значений с указанием моментов времени, которым соответствуют эти значения
- Г. связанные с определением сил действующих на пробу или внутри пробы
- 12. Абсолютная погрешность измерения это:
- А. абсолютное значение разности между двумя последовательными результатами измерения
- Б. составляющая погрешности измерений, обусловленная несовершенством принятого метода измерений
- В. являющаяся следствием влияния отклонения в сторону какого либо из параметров, характеризующих условия измерения
- Г. разность между измеренным и действительным значением измеряемой величины
- Д. все перечисленное верно
- 13. Относительная погрешность измерения:

- А. погрешность, являющаяся следствием влияния отклонения в сторону какого либо из параметров, характеризующих условия измерения
- Б. составляющая погрешности измерений не зависящая от значения измеряемой величины
- В. абсолютная погрешность деленная на действительное значение
- Г. составляющая погрешности измерений, обусловленная несовершенством принятого метода измерений
- Д. погрешность результата косвенных измерений, обусловленная воздействием всех частных погрешностей величин-аргументов
- 14. Систематическая погрешность:
- А. не зависит от значения измеряемой величины
- Б. зависит от значения измеряемой величины
- В. составляющая погрешности повторяющаяся в серии измерений
- Г. разность между измеренным и действительным значением измеряемой величины
- Д. справедливы "А", "Б" и "В"
- 15. Случайная погрешность:
- А. составляющая погрешности случайным образом изменяющаяся при повторных измерениях
- Б. погрешность, превосходящая все предыдущие погрешности измерений
- В. разность между измеренным и действительным значением измеряемой величины
- Г. абсолютная погрешность, деленная на действительное значение
- Д. справедливы "А", "Б" и "В"
- 16. Государственный метрологический надзор осуществляется:
- А. на частных предприятиях, организациях и учреждениях
- Б. на предприятиях, организациях и учреждениях федерального подчинения
- В. на государственных предприятиях, организациях и учреждениях муниципального подчинения
- Г. на государственных предприятиях, организациях и учреждениях имеющих численность работающих свыше ста человек
- Д. на предприятиях, в организациях и учреждениях вне зависимости от вида собственности и ведомственной принадлежности
- 17. Поверка средств измерений:
- А. определение характеристик средств измерений любой организацией имеющей более точные измерительные устройства чем поверяемое
- Б. калибровка аналитических приборов по точным контрольным материалам
- В. совокупность операций, выполняемых органами государственной службы с целью определения и подтверждения соответствия средства измерений установленным техническим требованиям
- Г. совокупность операций, выполняемых, организациями с целью определения и подтверждения соответствия средства измерений современному уровню
- Д. все перечисленное верно
- 18. К сферам распространения государственного метрологического контроля и надзора относится:

- А. здравоохранение
- Б. ветеринария
- В. охрана окружающей среды
- Г. обеспечение безопасности труда
- Д. все перечисленное
- 19. Проверки соблюдения метрологических правил и норм проводится с целью:
- А. определение состояния и правильности применения средств измерений
- Б. контроль соблюдения метрологических правил и норм
- В. определение наличия и правильности применения аттестованных методик выполнения измерений
- Г. контроль правильности использования результатов измерения
- Д. все, кроме "Г"
- 20. Поверка по сравнению с внешним контролем качества обеспечивает:
- А. более точный контроль инструментальной погрешности средств измерения
- Б. больший охват контролем различных этапов медицинского исследования
- В. более точное определение чувствительности и специфичности метода исследования реализованного на данном приборе
- Г. обязательное определение систематической составляющей инструментальной погрешности

Д. "А"+"Г"

Сертификация

- 1.Код товара составляет:
- а) национальная организация по стандартизации,
- б) изготовитель товара,
- в) торговая организация.
 - 2. Конечный потребитель по цифровому ряду кода может определить:
- а) страну происхождения товара,
- б) фирму-поставщика,
- в) качество товара.
 - 3. Отдельные государственные стандарты Советского Союза применяются в качестве межгосударственных стандартов в СНГ:
- а) да,
- б) нет.
 - 4. Государственная метрологическая служба подчинена:
- а) Правительству РФ,
- б) Госстандарту РФ,
- в) Госэнергонадзору.
 - 5. Сертификация средств измерений:
- а) обязательная,
- б) добровольная.
 - 6. Система единиц физических величин это:
- а) совокупность единиц, используемых на практике,
- б) совокупность основных и производных единиц,
- в) совокупность основных единиц.

- 7. Первый в мире официально утвержденный эталон это:
- а) «метр Архива»,
- б) набор мер,
- в) «килограмм Архива».
 - 8. Общее руководство Государственной метрологической службой осуществляет:
- а) Торгово-промышленная палата,
- б) Министерство торговли РФ
-) Госстандарт РФ.
 - 9. Необходимо сравнить показания двух электроприборов, один из которых работает при постоянном токе, а другой при переменном. В качестве проверки следует выбрать:
- а) непосредственное сличение с эталоном,
- б) прямые измерения величины,
- в) слияние через компаратор.
 - 10. К государственному метрологическому контролю относится:
- а) поверка эталонов,
- б) сертификация средств измерений.
 - 11. Испытательная лаборатория приобретает необходимые полномочия, если она:
- а) аттестована, б) технически компетентна,
- в) аккредитована и технически компетентна, г) аккредитована.
 - 12. Обязательная сертификация в РФ введена законом:
- а) «О сертификации», б) «О защите прав потребителей»,
- в) «О санитарно-эпидемиологическом благополучии населения».
 - 13. Государственное предприятие готовится к поверке средств измерений своей метрологической лаборатории. Процедуру поверки следует организовать в соответствии с поверочной схемой:
- а) локальной, б) государственной.
 - 14. Подтверждение поставщика о соответствии товара имеет форму:
- а) стандарта предприятия, б) заявления-декларации, в) сертификата качества.
 - 15. Процедуру обязательной сертификации продукции оплачивает:
- а) заявитель, б) Госстандарт РФ, в) организация потребитель.
 - 16. Добровольная сертификация проводится в системах:
- а) добровольной сертификации, б) обязательной сертификации, в) Госторгинспекции.
 - 17. Знаки соответствия имеют системы:
- а) обязательной сертификации, б) добровольной сертификации.
 - 18. Для товаров, подлежащих обязательной сертификации, ответственность за наличие сертификата и знака соответствия несет:
- а) торговая организация, б) изготовитель товара,
- в) испытательный центр, г) Госстандарт РФ.
 - 19. Можете ли Вы поменять при наличии чека продовольственный товар надлежащего качества?
- а) да, б) нет.
 - 20. К факторам, формирующим качество, относится:

- а) сырье для упаковки, б) упаковка, в) маркировка,
- г) технологический процесс производства, д) хранение, е) транспортировка.
 - 21. С какого времени идет гарантийный срок на сезонные товары?
- а) со времени покупки, б) со времени начала сезона.
 - 22. Большинство российских испытательных лабораторий аккредитовано на:
- а) техническую компетентность, б) независимость,
- в) техническую компетентность и независимость.
 - 23. Номенклатура товаров, подлежащих обязательной сертификации, распространяется на импортируемые товары:
- а) да, б) нет.
 - 24.К факторам, сохраняющим качество, относится:
- а) сырье для продукции б) сырье для упаковки, в) маркировка,
- г) технологический процесс производства, д) транспортировка

Раздел 2. Теоретическая механика.

Тема 2.1 Статика

Устный опрос по вопросам:

- 1. Дайте определение абсолютно твердого тела и материальной точки.
- 2. Что такое сила? Охарактеризуйте эту физическую величину и единицу ее измерения в системе СИ.
- 3. Перечислите и охарактеризуйте основные аксиомы статики.
- 4. Что такое "эквивалентная", "равнодействующая" и "уравновешивающая" система сил?

Вариант- 1

Блок А

No	3адание (вопрос)					
П/П Инструкция по выполнению заданий № 1-4: соотнесите содержание столбца 1 с содержанием столбца 2. Запишите в соответствующие строки бланка ответов букву из столбца 2, обозначающую правильный ответ на вопросы столбца 1. В результате выполнения Вы получите последовательность букв. Например,						
	№ задания		ант ответ		1	
	1		А, 2- Б, 3-В.			П
F1 F2 Рис. 1. F1 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F2 F3	твие между рисункат	ми и	<u>Рисунок.</u> 1.Рис. 1 2.Рис. 2 3.Рис. 3	А. I Б. С В. I	ределение Изгиб Сжатие Растяжение Сручение	1 – B 2 – Б 3 – A

3.	Установить соответствие между рисунками и выражениями для расчета проекции силы на ось ОХ У	Силы Проекции сил 1. F1 A. 0 2. F2 БF 3. F3 BF sin 35° ГF cos 35°	1 – Б 2 – A 3 – Γ
3.	видами движения точки.	1.Рис.1 2.Рис.2 3.Рис.3 Виды движения А. Равномерное Б. Равноускоренное В. Равнозамедленное	1 – Б 2 – В
4.	Установите соответствие между рисунком и определением: $ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	Рис. Определение 1. Рис.1 А. Жесткая заделка 2. Рис.2 Б. Неподвижная опора 3. Рис.3 В. Подвижная опора Г. Вид опоры не определен	1 – Б 2 – А 3 – В
	струкция по выполнению заданий № 5 -23: выбер		ую
<i>np</i> 5.	авильному варианту ответа и запишите ее в бла Укажите, какое движение является простейшим.	1. Молекулярное 2. Механическое 3. Движение электронов 4. Отсутствие движения	2.
6.	Укажите, какое действие производят силы на реальные тела.	1. Силы, изменяющие форму и размеры реального тела 2. Силы, изменяющие движение реального тела 3. Силы, изменяющие характер движения и деформирующие реальные тела 4. Действие не наблюдаются	3.
7.	Укажите, признаки уравновешивающая силы?	1. Сила, производящая	

		такое же действие как	2.
		данная система сил	
		2. Сила, равная по	
		величине	
		равнодействующей и	
		направленная в	
		противоположную сторону	
		3. Признаков действий нет	
8.	Укажите, к чему приложена реакция опоры	1. К самой опоре	
		2. К опирающему телу	2.
		3. Реакция отсутствует	
9.	Укажите, какую систему образуют две силы,	1. Плоскую систему сил	
	линии, действия которых перекрещиваются.	2. Пространственную	
		систему сил	
		3. Сходящуюся систему	3.
		сил	
		4. Система отсутствует	
10.	Укажите, чем можно уравновесить пару сил?	1. Одной силой	
		2. Парой сил	
		3. Одной силой и одной	2.
		парой	
11.	Укажите, что надо знать чтобы определить	1. Величину силы и плечо	
	эффект действия пары сил?	пары	
		2. Произведение величины	
		силы на плечо	
		3. Величину момента пары	3.
		и направление	
		4. Плечо пары	
12.	Укажите опору, которой соответствует	1. Шарнирно-неподвижная	
	составляющие реакций опоры балки	2. Шарнирно-подвижная	
	·	3. Жесткая заделка	
	Ya		
	\wedge		
			3.
	A Xa		
			
	[™] Ma		
13.	Нормальная работа зубчатого механизма была	1. Из-за недостаточной	
	нарушена из-за возникновения слишком	прочности	
	больших упругих перемещений валов. Почему	2. Из-за недостаточной	
	нарушилась нормальная работа передачи	жесткости валов	1.
		3. Из-за недостаточной	
		устойчивости валов	
14.	Укажите вид изгиба, если в поперечном	1. Чистый изгиб	
	сечении балки возникли изгибающий момент и	2. Поперечный изгиб	2.
	поперечная сила		
15.	Точка движется из А в В по траектории,	1. Скорость направлена по	
	указанной на рисунке. Укажите направление	CK	
	скорости точки?	2. Скорость направлена по	
		CM	3.
		3. Скорость направлена по	
		CN	

	M N B	4. Скорость направлена по CO	
16.	Укажите, в каком случае материал считается однородным?	1. Свойства материалов не зависят от размеров 2. Материал заполняет весь объем 3. Физико-механические свойства материала одинаковы во всех направлениях. 4. Температура материала одинакова во всем объеме	3.
17.	Укажите, как называют способность конструкции сопротивляться упругим деформациям?	 Прочность Жесткость Устойчивость Выносливость 	3.
18.	Укажите, какую деформацию получил брус, если после снятия нагрузки форма бруса восстановилась до исходного состояния?	 Пластическую Остаточную Упругую 	4.
19.	Укажите точную запись условия прочности при растяжении и сжатии?	1. $\sigma = N/A = [\sigma]$ 2. $\sigma = N/A \le [\sigma]$ 3. $\sigma = N/A \ge [\sigma]$ 4. $\sigma = N/A \ge [\sigma]$	2.
20.	Укажите, какие механические напряжения в поперечном сечении бруса при нагружении называют «нормальными»	1. Возникающие при нормальной работе 2. Направленные перпендикулярно	2.

		площадке 3. Направленные параллельно площадке 4. Лежащие в площади сечения	
21.	Укажите, что можно сказать о плоской системе сил, если при приведении ее к некоторому центру главный вектор и главный момент оказались равными нулю?	1. Система не уравновешена 2. Система заменена равнодействующей 3. Система заменена главным вектором 4. Система уравновешена	4.
22.	Укажите, как называется и обозначается напряжение, при котором деформации растут при постоянной нагрузке?	1. Предел прочности, ов 2. Предел текучести, от 3. Допускаемое напряжение, [о] 4. Предел пропорциональности, опц	2.
23.	Указать по какому из уравнений, пользуясь методом сечений, можно определить продольную силу в сечении?	$\begin{aligned} 1. & Qx = \Sigma F_{kx} \\ 2. & Qy = \Sigma F_{ky} \\ 3. & N = \Sigma F_{kz} \\ 4. & M_k = \Sigma M_z(F_k) \end{aligned}$	3.

Блок Б

$N_{\underline{0}}$	Задание (вопрос)				
Π/Π					
отво	Инструкция по выполнению заданий № 24-30: В соответствующую строку бланка ответов запишите ответ на вопрос, окончание предложения или пропущенные				
слов	a.				
24.	Допишите предложение: Плечо пары — кратчайшее, взятое по перпендикуляру к линиям действия сил.	1. Расстояния			
25.	Допишите предложение:	1. Нулю			
	Условие равновесия системы пар моментов состоит в том, что алгебраическая сумма моментов пар равняется				
26.	Допишите предложение:	1. Величину			
	Напряжение характеризует и направление внутренних сил,				
	приходящихся на единицу площади в данной точке сечения				
	тела.				
27.	Допишите предложение:	1. Продольная			
	Растяжение или сжатие – это такой вид деформации стержня,				
	при котором в его поперечны сечениях возникает один				
•	внутренний силовой факторсила.	1.0			
28.	Допишите предложение:	1. Окружность			
	При вращательном движении твердого тела вокруг				
	неподвижной оси траектория всех точек, не лежащих на оси вращения, представляют собой				
29.	Допишите предложение:	1. Момента			
	Работа пары сил равна произведению на угол поворота,				
	выраженный в радианах.				
30.	Допишите предложение:	1. Угловую			
	Мощность при вращательном движении тела равна	скорость			
	произведению вращающего момента на				

Вариант- 2

Блок А

№ п/п	Задание (вопрос)					
Инст содера букву	трукция по выполнению заданий № 1-4: соотнесите содержание столбца 1 с ержанием столбца 2. Запишите в соответствующие строки бланка ответов ву из столбца 2, обозначающую правильный ответ на вопросы столбца 1. В ультате выполнения Вы получите последовательность букв. Например,					
		№ задания		нт ответа		
1	***	1		4 , 2- Б, 3-В.		1 D
1.	определениями:	F2	F2	2. Рис.2 Б. С В. Растя	Ізгиб жатие ижение	1 – В 2 – Б
2.		расчета проекции силь 2 2 45		1. F ₁ A. 0 2. F ₂ BF 3. F ₃ BF s	eкции sin 45° cos 45°	1– А 2– В 3 –Б
3.	направлениями м	рисунка оментов пар м Рис.2 Рис.3	ми и	Рисунки 1. Рис.1 2. Рис.2 3. Рис.3 Направление А— Положителнаправление Б— Отрицательнаправление В— Нет вариан	ное	1- А 2- Б 3- А
4.	определениями: $\begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & &$	$\mathbf{a}_{n}=0 \qquad \mathbf{a}_{t} \\ \mathbf{a}_{n}=0$	Рис.2 а _{t U = f(t)} Рис.4	Рисунки 1. Рис.1 2. Рис.2 3. Рис.3 4. Рис.4 Направление А— Неравномер криволинейное движение Б — Равномерн движение В — Равномерн Криволинейное	oe oe	1 – Б 2 – Γ 3 – B 4 – A

		1	
		движение	
		Г – Неравномерное	
		движение	
		Д – Верный ответ	
		не приведен	
Инси	прукция по выполнению заданий № 5 -23: выбери	ите цифру, соответствуюї	цую
прав	ильному варианту ответа и запишите ее в блан	к ответов.	
5.	Укажите, какую характеристику движения	1.Траекторию движения	
	поездов можно определить на карте	2. Расстояние между	
	железнодорожных линий?	поездами	1
		3. Путь, пройденный	
		поездом	
		4. Характеристику	
		движения нельзя	
		определить	
6.	Укажите, в каком случае не учитывают	1. При исследование	
•	деформации тел.	равновесия.	
	,, 1 - F	2. При расчете на	1
		прочность	
		3. При расчете на	
		жесткость	
		4. При расчете	
		выносливости	
7.	Укажите, какое изображение вектора содержит	1. Рис 1	
7.		2. Рис 2	
	все элементы, характеризующие силу:	2. Рис 2 3. Рис 3	3
	C - and al		3
	F=10H 4	4. Рис 4	
	1 A 2 B 3		
	A		
8.	Укажите, как взаимно расположена	1. Они направлены в	
	равнодействующая и уравновешенная силы?	одну сторону	
		2. Они направлены по	
		одной прямой в	2
		противоположные	
		стороны	
		3. Их взаимное	
		расположение может	
		быть произвольным	
		4. Они пересекаются в	
		одной точке	
9.	Укажите, почему силы действия и	1. Эти силы не равны по	
٦.	противодействия не могут взаимно	модулю	
	уравновешиваться?	2. Они не направлены по	
	уравновешиваться:	одной прямой	4
		<u> </u>	+
		3. Они не направлены в	
		противоположные	
		стороны	
		4. Они принадлежат	
		разным телам	

10.	Выбрать выражение для расчета проекции силы F5 на ось Ох	1F5 cos 30° 2. F5 cos 60°	1
	•	3. –F5 cos 60° 4. F5 sin 120°	
	F1 F3 F4 F5		
	60 × 60		
11.	Тело находится в равновесии m1 = 15Hm; m2 = 8Hm; m3 = 12Hm; m4 = ?	1. 14Hm 2. 19Hm	
	Определить величину момента пары m4	3. 11Hm	2
	m1	4. 15Hm	
	ms ms		
12.	Произвольная плоская система сил приведена к главному вектору $F\Sigma$ и главному моменту	1. 25 кН 2. 105 кН	
	$M\Sigma$.	3. 125 кH	
	Чему равна величина равнодействующей?	4. 230 кН	
	$F\Sigma = 105 \text{ κH}$ $M\Sigma = 125 \text{ κHm}$		2
	FΣ		
10	MΣ		
13.	Чем отличается главный вектор системы от равнодействующей той же системы сил?	1. Величиной 2. Направлением	
	publication for the energing cities.	3. Величиной и	4
		направлением	
1.4		4. Точкой приложения	
14.	Сколько неизвестных величин можно найти,	1. 6 2. 2	2
	используя уравнения равновесия пространственной системы сходящихся сил?	3. 3	2
		4. 4	
15.	что произойдет с координатами Хс и Ус, если	1. Хс и Ус не изменятся	
	увеличить величину основания треугольника	2. Изменится только Хс	2
	до 90 мм?	3. Изменится только Ус 4. Изменится и Хс, и Ус	
	у	115,110111110/11 /10, 11 / 0	
	8		
	<u> </u>		
	0 ≤ 60 × X		
16	Точка движется по линии ABC и в момент t	1. Равномерное	2
	занимает положение В.	2. Равноускоренное	3

	Определите вид движения точки	3. Равнозамедленное	
		4. Неравномерное	
	a _n √B		
	Ĭ Ĵ		
	,		
	$a_t = const$		
17.	По какому из уравнений, пользуясь методом	$1. Q_X = \sum F_{KX}$	
	сечений, можно определить продольную силу	$2. Q_V = \sum F_{KV}$	2
	в сечении?	<u> </u>	3
		$3. N = \sum_{KZ} F_{KZ}$	
		$4. \ M_K = \sum M_Z(F_K)$	
18.	Укажите, какой знак имеет площадь отверстий	1. Знак минус	
	в формуле для определения центра тяжести	2. Знак плюс	1
10	Vyonyyra yong yohomisaya sanyyra	3. Ни тот не другой	
19.	Укажите, какая деформация возникла в теле если после снятия нагрузки размеры и форма	1. Упругая деформация 2. Пластическая	1
	тела полностью восстановились?	деформация	1
	Testa nosmoetisto boccianosisties.	3. Деформация не	
		возникала	
20.	Укажите, почему произошло искривление	1. Из-за недостаточной	
	спицы под действием сжимающей силы?	прочности	
		2. Из-за недостаточной	
		жесткости	3
		3. Из-за недостаточной	
		устойчивости.	
		4. Из-за недостаточной	
21	Укажите, как изменится вращающий момент	выносливости 1. Вращающий момент	
21.	М, если при одной и той же мощности	уменьшится	
	уменьшит угловую скорость вращения вала.	2. Вращающий момент	2
	, , , , , , , , , , , , , , , , , , ,	увеличится	
		3. Вращающий момент	
		равен нулю	
		4. Нет разницы	
22.	Укажите, какая составляющая ускорения	1. Нормальное	
	любой точки твердого тела равна нулю при	ускорение	2
	равномерном вращении твердого тела вокруг	2. Касательное	
	неподвижной оси.	ускорение 3. Полное ускорение	
		4. Ускорение равно нулю	
23.	Как называется способность конструкции	1. Прочность	
	сопротивляться упругим деформациям?	2. Жесткость	
	7 17 - T-T	3. Устойчивость	2
		4. Износостойкость	
	. . .		

Блок Б

№	Задание (вопрос)	
Π/Π		

Инструкция по выполнению заданий N_2 24-30: В соответствующую строку бланка ответов запишите ответ на вопрос, окончание предложения или пропущенные слова.

24.	Допишите предложение: Парой сил называют две параллельные силы равные по и	1 Можино
	1 1	1. Модулю
	направленные в противоположные стороны.	
25.	Допишите предложение:	
	Тело длина которого значительно больше размеров	1. Стержнем
	поперечного сечения принято называть брусом или	
26.	Допишите предложение:	Допускаемого
	Условие прочности состоит в том, что рабочие (расчетные)	напряжения
	напряжения не должны превышать	
27.	Допишите предложение:	
	Кручение - это вид деформации, при котором в поперечных	Крутящий момент
	сечениях бруса возникает один внутренний силовой фактор	
28.	Допишите предложение:	
	При чистом изгибе в поперечных сечениях балки возникает	Изгибающий
	один внутренний силовой фактор	момент
29.	Допишите предложение:	
	Сила инерции точки равна по величине произведению массы	1. Ускорению
	точки на ее ускорение и направленно в сторону,	
	противоположную	
30.	Допишите предложение:	
	Работа силы на прямолинейном перемещении равна	1. Модуля силы
	произведению на величину перемещения и на косинус	
	угла между направлением силы и направлением перемещения.	

Критерии оценивания

Оценка в	Критерии оценки	Количество правильно
пятибалльной шкале		данных вопросов
«2»	Выполнено менее 70%	Даны верные ответы менее,
	задания	чем на 21 вопрос
«3»	Выполнено70-79%	Даны верные ответы на 21 -
	задания	24 вопроса
«4»	Выполнено 80-89%	Даны верные ответы на 25 -
	задания	27 вопросов
«5»	Выполнено более 90%	Данные верные ответы на 28
	задания	вопросов и более

Раздел Теоретическая механика.

Тема 2.1 Статика

Устный опрос по вопросам:

- 5. Дайте определение абсолютно твердого тела и материальной точки.
- 6. Что такое сила? Охарактеризуйте эту физическую величину и единицу ее измерения в системе СИ.
- 7. Перечислите и охарактеризуйте основные аксиомы статики.
- 8. Что такое "эквивалентная", "равнодействующая" и "уравновешивающая" система сил?

Плоская система сходящихся сил

Тестовое задание

ТЕХНИЧЕСКАЯ МЕХАНИКА. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА CTATHKA

Ілоская система сходящихся сил	Темы 1.1; 1.2	Вариант
Вопросы	Ответы	Код
1. Определить проекцию равнодействующей системы сил на ось x .	-24,8 кН	1
F_1 0	-12,48 кН	2
45° 60° x	–35 кН	3
$F_2 = 50 \text{ kH}; F_3 = 20 \text{ kH}; F_1 = 10 \text{ kH}$	Верный ответ не приведен	4
2. Система сходящихся сил уравновешена. Определить величину F_{4y} , если известно:	16 H	1
$\sum Fkx = 0$ $F_{1y} = 16 \text{ H}; F_{2y} = -46 \text{ H}; F_{3y} = 20 \text{ H}.$	10 H	2
	-8 H	3
	6 H	4
. Как направлен вектор равнодействующей силы, если		_ 1
известно, что $F_x = 15 \text{ H}; F_y = -20 \text{ H}.$	F F K	_F 2
*	2	3
	1	4
. Груз находится в равновесии. Указать, какой из силовых треугольников для шарнира В построен верно.	R_{C}	1
30° 45°	R_A F R_C	2
Ф Щ В	R_A R_C R_A R_A	3
\biguplus^F	Q Q	4
. Груз F находится в равновесии. Указать, какая система уравнений для шарнира B верна.	$\sum Fkx = R_3 - R_1 \cos 60^\circ = 0$ $\sum Fky = R_2 - R_1 \cos 30^\circ = 0$	1
60° 3	$\sum Fkx = R_3 - R_1 \cos 30^\circ = 0$ $\sum Fky = R_2 - R_1 \cos 60^\circ = 0$	2
2	$\sum Fkx = -R_3 + R_2 \cos 30^\circ = 0$ $\sum Fky = R_2 - R_1 \cos 60^\circ = 0$	3
\bigvee_F	Верный ответ не приведен	4

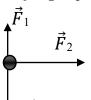
Пара сил. Момент силы относительно точки

Тестовое задание

- 1. Что называется силой?
- а) Давление одного тела на другое. тела на другое.
- в) Величина взаимодействия между телами. телами (объектами).
- 2. Назовите единицу измерения силы?
- а) Паскаль.
- в) Герц.
- 3. Чем нельзя определить действие силы на тело?
- а) числовым значением (модулем);
- в) точкой приложения;

б) Мера воздействия одного

г) Мера взаимосвязи между


- б) Ньютон.
- г) Джоуль.
- б) направлением;
- г) геометрическим размером;
- 4. Какой прибор служит для статистического измерения силы?

а) амперметр;

б) гироскоп;

в) динамометр;

- г) силомер;
- 5. Какая система сил называется уравновешенной?
- а) Две силы, направленные по одной прямой в разные стороны.
- б) Две силы, направленные под углом 90° друг к другу.
- в) Несколько сил, сумма которых равна нулю.
- г) Система сил, под действием которых свободное тело может находится в покое.
- 6. Чему равна равнодействующая трёх приложенных к телу сил, если $F_1=F_2=F_3=10$ кH? Куда она направлена?

а) 30 кН, вправо.

б) 30 кН, влево

в) 10 кН, вправо.

г) 20 кН, вниз.

 \vec{F}_3

7. Какого способа не существует при сложении сил, действующих на тело?

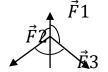
фа) геометрического;

б) графического;

в) тензорного;

г) аналитического;

8. Две силы F_1 =30H и F_2 =40H приложены к телу под углом 90^0 друг другу. Чему равна их равнодействующая?


a) 70H.

б) 10Н.

в) 50Н.

г) 1200Н.

9. Чему равна равнодействующая трёх сил, если F_1 = F_2 = F_3 =10 кH?

a) 0 кH.

б) 10 кН.

в) 20 кН.

г) 30 кН.

- 10. Что называется моментом силы относительно точки (центра)?
- а) Произведение модуля этой силы на время её действия.
- б) Отношение силы, действующей на тело, к промежутку времени, в течение которого эта сила действует.
- в) Произведение силы на квадрат расстояния до точки (центра).
- г) Произведение силы на кратчайшее расстояние до этой точки (центра).
- 11. Когда момент силы считается положительным?
- а) Когда под действием силы тело движется вперёд.
- б) Когда под действием силы тело вращается по ходу часовой стрелки.
- в) Когда под действием силы тело движется назад.
- г) Когда под действием силы тело вращается против хода часовой стрелки.
- 12. Что называется парой сил?
- а) Две силы, результат действия которых равен нулю.
- б) Любые две силы, лежащих на параллельных прямых.
- в) Две силы, лежащие на одной прямой, равные между собой, но противоположные по направлению.
- г) Две силы, лежащие на параллельных прямых, равные по модулю, но противоположные по направлению.

Плоская система произвольно расположенных сил

<u>Тестовое задание</u>

ТЕХНИЧЕСКАЯ МЕХАНИКА. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТАТИКА

Вопросы	Ответы	Код
. Найти момент присоединенной пары при переносе силы F_2 в точку A .	25 кН⋅м	1
	45 кН · м	2
F_1 A $F_2 = 25 \text{ kH}$ B	175 кН⋅м	3
<i>AB</i> = 3 M	75 kH · M	4
. Определить величину главного момента при приведении системы сил к точке A . $F_1 = 36 \ \mathrm{kH};$	45 кH · м	1
$F_2 = 18 \text{ kH};$;	
$m = 45 \text{ кH} \cdot \text{м}.$	72 кH · м	2
2 м	81 кН⋅м	3
4 M	117 кН⋅м	4
5. Произвольная плоская система сил приведена к главному вектору F_Σ и главному моменту M_Σ . Чему	25 кН	1
равна величина равнодействующей? $F_{\Sigma} = \! 105 \; \text{кH};$ $M_{\Sigma} = \! 125 \; \text{кH} \cdot \text{м}.$	105 кН	2
$\overline{F_{\Sigma}}$	125 кН	3
M_{Σ}	230 кН	4
4. Выбрать наиболее подходящую систему уравнений равновесия для определения реакций в опорах	$\sum F_{kx} = 0; \sum F_{ky} = 0; \sum M_B = 0$	1
изображенной балки.	$\sum F_{kx}=0; \sum F_{ky}=0; \sum M_A=0$	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sum F_{kx} = 0; \sum M_A = 0; \sum M_B = 0$	3
6 M 2 M 2 M	$\sum M_A=0; \sum F_{ky}=0; \sum M_C=0$	4
5. Рассчитать сумму моментов сил относительно точки A .	70 кН⋅м	1
15 KH 20 KH	340 кН⋅м	2
45.	240 кН⋅м	3
2 M 3 M 3 M	200 кН⋅м	4

Центр тяжести

Тестовое задание

ТЕХНИЧЕСКАЯ МЕХАНИКА. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА CTATUKA

Центр	тяжести	тела
-------	---------	------

Тема 1.6

Вариант 1

Вопросы	Ответы	Код	
1. Выбрать формулы для расчета координат центра тяжести однородного тела, составленного из объемных	$x_C = \frac{\sum G_k x_k}{\sum G_k}; y_C = \frac{\sum G_k y_k}{\sum G_k}$	1	
частей.	$x_C = \frac{\sum l_k x_k}{\sum l_k}; y_C = \frac{\sum l_k y_k}{\sum l_k}$	2	
	$x_C = \frac{\sum A_k x_k}{\sum A_k}; y_C = \frac{\sum A_k y_k}{\sum A_k}$	3	
	$x_C = \frac{\sum V_k x_k}{\sum V_k}; y_C = \frac{\sum V_k y_k}{\sum V_k}$	4	
2. Вычислить статический момент данной плоской фигуры	$36 \cdot 10^3 \text{mm}^3$	1	
относительно оси 0х.	$72 \cdot 10^3 \text{мм}^3$	2	
60	$120 \cdot 10^3$ мм 3	3	
$0 \xrightarrow{\otimes} x $	$60 \cdot 10^3$ мм 3	4	
3. Определить координату центра тяжести фигуры 2 относительно оси $0x$. $a = 270 \text{ мм}; b = 150 \text{ мм}; c = 90 \text{ мм}$	150 мм	. 1	
2	180 мм	2	
3 1 2 x	160 мм	3	
	30 мм	4	
4. Определить координату y_C центра тяжести фигуры 1.	2,75 см	1	
y A M <u>№16</u>	7,25 см	2	
$\frac{100 \times 100 \times 8}{1}$	5 см	3	
b x	4,25 см	4	
5. Вычислить координату x_C центра тяжести составного сечения.	23,8	1	
Ø20 Ø20	28	2	
8 9	18,8	3	
0 20 60 x	12,5	4	

Тема 2.2. Кинематика.

Основные понятия кинематики

Тестовое задание

- 1. Что изучает кинематика?
- а) Движение тела под действием приложенных к нему сил.
- б) Виды равновесия тела.
- в) Движение тела без учета действующих на него сил.
- г) Способы взаимодействия тел между собой.
- 2. Что из ниже перечисленного не входит в систему отсчёта?
- а) Способ измерения времени.

б) Пространство.

в) Тело отсчёта. отсчёта. г) Система координат, связанная с телом

- 3. Какого способа не существует для задания движения точки (тела)?
- а) Векторного.

б) естественного.

в) Тензорного.

- г) Координатного.
- 4. Движение тела описывается уравнением $x = 12 + 6.2t 0.75t^2$. Определите скорость тела через 2с после начала движения.
- a) 21,4 m/c

б) 3,2 м/c

в) 12 м/с

- Γ) 6,2 M/c
- 5. Движение тела описывается уравнением $\mathcal{X} = 3 12t + 7t$. Не делая вычислений, назовите начальную координату тела и его начальную скорость.
- a) 12m; 7m/c

б) 3м; 7м/с

 8 7 4 3 4 6

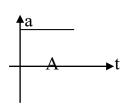
- Γ) 3M; -12M/c
- 6. Чему равно ускорение точек на ободе колеса диаметром 40см, движущегося со скоростью 36 км/ч?
- a) 250 m/c^2

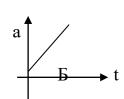
б) 1440 м/c^2

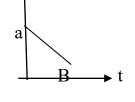
в) 500 м/c^2

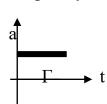
- Γ) 4 M/c^2
- 7. Определите полное ускорение тела, для которого $a_n = 4 \text{м/c}^2$, $a_\tau = 3 \text{м/c}^2$
- a) 7 m/c^2

б)1 м/ c^2


 $^{\circ}$ 5 $^{\circ}$ 5 $^{\circ}$ 6 $^{\circ}$


- Γ) 25 M/c^2
- 8. Тело вращается согласно уравнению: $\varphi = 50 + 0.1t + 0.02t^2$. Не делая вычислений, определите угловую скорость вращения ω и угловое ускорение ε этого тела.
- а) 50 рад/с; 0,1 рад/с²


б) 0,1 рад/с; 0,02 рад/с


в) 50 рад/с; 0.02 рад/с²

- Γ) 0,1 рад/c; 0,04 рад/c²
- 9. На рисунке изображены графики зависимости ускорения от времени для разных движений. Какой из них софтветствует равномерному движению?

а) график А

б) график Б

в) график В

г) график Г

10. По дорогам, пересекающимся под прямым углом, едут велосипедист и автомобилист. Скорости велосипедиста и автомобилиста относительно дороги соответственно равны 8 м/с и 15 м/с. Чему равен модуль скорости автомобилиста относительно велосипедиста?

a) 1 m/c

б) 3 м/с

B) 9 M/c

г) 17м/с

Кинематика точки

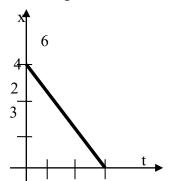
Тестовое задание

ТЕХНИЧЕСКАЯ МЕХАНИКА. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА $K\ U\ H\ E\ M\ A\ T\ U\ K\ A$

Тростейшие движения твердого тела	Тема 1.9	Вариант 1	
Вопросы	Ответы	Код	
1. Закон вращательного движения тела $\phi = 1,2t^2 + 2,4t.$	2,4 c	1	
Оределить, за какое время угловая скорость тела достигнет величины ω = 19,2 рад/с.	14 c	2	
	7 c	3	
	12,4 c	4	
2. Выбрать соответствующий кинематический график движения, если закон движения	A	1	
$\varphi = 1.3t^2 + t.$ $\varphi = 1.3t^2 + t.$	Б	2	
	В	3	
$0 \frac{1}{A} \qquad 0 \frac{1}{B} \qquad 0 \frac{1}{A} \qquad 0 $	Γ	4	
. Для движения, закон которого задан в вопросе 2, определить угловое ускорение в момент $t=10$ с.	1,3 рад/c ²	1	
	2,6 рад/c ²	2	
	26 рад/c²	3	
	130 рад/c ²	4	
. Груз F начинает двигаться вверх из состояния покоя с постоянным ускорением $a = 1,26 \text{ м/c}^2$. Определить частоту вращения колеса через 5 с после	n = 10,5 об/мин	1	
начала движения. ∅1,2 м	n = 62,5 об/мин	2	
\bar{v}	n = 100 об/мин	3	
F	n = 597 об/мин	4	
. Известно, что скорость точки $A \upsilon_A = 12 \text{м/c}.$ Определить скорость точки $B.$	2,4 м/с	1	
$r_1 = 2 \text{ M};$ $r_2 = 1,4 \text{ M}.$	6 м/с	2	
ν ₁ ω	8,4 м/с	3	
r_2 B	12 м/с	4	
		-	

Простейшие движения твердого тела

Тестовое задание


1. В вагоне поезда, скорость которого равна 1мс, навстречу движению идет пассажир со скоростью 1,5 м/с. Чему равна по модулю скорость пассажира для людей, стоящих на платформе?

a)
$$0.5 \text{ m/c}$$

б) 2,5 м/c

 Γ) 1,5 M/c

2. На рисунке показан график зависимости координаты автомобиля от времени. Какова скорость автомобиля?

a) -2 m/c

б) -0, 5 м/с

B) 0.5 m/c

 Γ) 2 M/c

3. Моторная лодка развивает скорость 4 м/с. За какое минимальное время лодка может пересечь реку шириной 200 м при скорости течения реки 3 м/с.

б) 200 с

г) 0,02 с

4. Тело совершает движение, уравнение которого $x = 10 \cdot \sin(20t + 5)$. В соответствии с этой формулой циклическая частота равна:

б) 10 рад/с

г) 25 рад /с

5. Движение тела описывается уравнением $x = 12 + 6.2t + 0.75t^2$. Определите скорость и ускорение тела через 2с после начала движения.

a)
$$6.2 \text{ m/c}$$
; 0.75 m/c^2

6) 9.2 m/c; 1.5 m/c^2

B)
$$0.75 \text{ m/c}$$
; 6.2 m/c^2

 Γ) 0,15 M/c; 12 M/c^2

6. Автомобиль, движущийся равномерно и прямолинейно со скоростью 60 км/ч, увеличивает в течение 20 с скорость до 90 км/ч. Определите какое ускорение получит автомобиль и какое расстояние он проедет за это время, считая движение равноускоренным?

a)
$$0,415$$
 m/c²; 417 m

б) 45 м/ c^2 ; 180 м

в)
$$15 \text{ м/c}^2$$
; 120км

 Γ) 0,045 м/ c^2 ; 30 км

7. Движение точки по прямолинейной	траектории описывается уравнением
$s = 0.2t^3 - t^2 + 0.6t$. Определите ско	рость и ускорение точки в начале
движения.	
a) 0.2 m/c ; 0.6 m/c^2	б) $0,6 \text{ м/c}; -1 \text{ м/c}^2$
B) 0.6 M/c ; -2 M/c^2	Γ) 0,2 M /c; -0,6 M /c ²
Основные понятия и аксиомы динами	ики.
<u>Тестовое задание</u>	
1.Товарный вагон, движущийся с небол	пьшой скоростью, сталкивается с другим
вагоном и останавливается. Какие прео	бразования энергии происходят в данном
процессе?	
а) Кинетическая энергия вагона пре	еобразуется в потенциальную энергию
пружины.	
б) Кинетическая энергия вагона преобра	зуется в его потенциальную энергию.
в) Потенциальная энергия пружины пре	образуется в её кинетическую энергию.
г) Внутренняя энергия пружины преобр	азуется в кинетическую энергию вагона.
2. Равнодействующая всех сил, дейст	вующих на автомобиль «Волга» массой
1400 кг, равна 2800 Н. Чему равно измет	нение скорости автомобиля за 10 сек?
a) 0	б) 2 м/с
$^{\rm B})~0.2~{\rm M/c}$	г) 20 м/с
3. Масса тела 2г, а скорость его движен	ия 50 м/с. Какова энергия движения этого
тела?	
а) 2,5 Дж	б) 25 Дж
в) 50 Дж	г) 100 Дж
4. Молоток массой 0,8 кг ударяет по г	воздю и забивает его в доску. Скорость
молотка в момент удара 5м/с, продол:	жительность удара равна 0,2 с. Средняя
сила удара равна:	
a) 40 H	б) 20 Н
в) 80 Н	г) 8 Н
5. Автомобиль движется со скоростью	40 м/с. Коэффициент трения резины об
асфальт равен 0,4. Наименьший радиус	поворота автомобиля равен:
а) 10 м	б) 160 м
в) 400 м	г) 40 м
6. Тело массой 5 кг движется по горизо	нтальной прямой. Сила трения равна 6 Н.
Чему равен коэффициент трения?	
a) 8,3	б) 1,2
в) 0,83	г) 0,12

в) 1500 Н	г) 375 Н
8. Два тела массами m ₁ =0,1 кг и m ₂ =0,	2 кг летят навстречу друг другу со
скоростями $v_1 = 20$ м/с и $v_2 = 10$ м/с.	Столкнувшись, они слипаются. На
сколько изменилась внутренняя энергия те	л при столкновении?
а) на 19 Дж	б) на 20 Дж
в) на 30 Дж	г) на 40 Дж
9. Мальчик массой 40 кг стоит в лифте. Ј	Іифт опускается с ускорением 1 м/c^2 .
Чему равен вес мальчика?	
a) 400 H	б) 360 H
в) 440 Н	г) 320 Н
10. Проводя опыт, вы роняете стальной и	парик на массивную стальную плиту.
Ударившись о плиту, шарик подскакив	ает вверх. По какому признаку, не
используя приборов, вы можете опред	елить, что удар шарика о плиту не
является абсолютно упругим?	
а) Абсолютно упругих ударов в природе не	е бывает.
б) На плите останется вмятина.	
в) При ударе шарик деформируется.	
г) Высота подскока шарика меньше высотн	ы, с которой он упал.
11. С яблони, высотой 5 м, упало яблоко	э. Масса яблока 0,6 кг. Кинетическая
энергия яблока в момент касания поверхно	•
а) 30 Дж	б) 15 Дж
в) 8,3 Дж	г) 0,12 Дж
12. Пружину жесткостью 30 Н/м растяну	ли на 0,04 м. Потенциальная энергия
растянутой пружины:	
а) 750 Дж	б) 1,2 Дж
в) 0,6 Дж	г) 0,024 Дж
13. Навстречу друг другу летят шарики п	·
соответственно равны $5 \cdot 10^{-2}$ кг · м/с	,
шарики слипаются. Чему равен импульс сл	-
a) $8 \cdot 10^{-2}$ кг · м/ c	б) $4 \cdot 10^{-2}$ кг · м/ c
в) $2 \cdot 10^{-2}$ кг · м/ c	Γ) $1 \cdot 10^{-2}$ к $\Gamma \cdot M/c$

7. Парашютист опускается равномерно со скоростью 4 м/с. Масса парашютиста с

б) 2400 Н

парашютом равна 150 кг. Сила трения парашютиста о воздух равна:

a) 6000 H

14. Гвоздь длиной 10 см забивают в деревянн	ный брус одним ударом молотка. В					
момент удара кинетическая энергия молотка равна 3 Дж. Определите среднюю						
силу трения гвоздя о дерево бруса?						
a) 300 H	б) 30 Н					
в) 0,3 Н	г) 0,03 Н					
15. Упавший и отскочивший от поверхнос	ти Земли мяч подпрыгивает на					
меньшую высоту, чем та, с которой он упал. Ч	[ем это объясняется?					
а) Гравитационным притяжением мяча к Земл	e.					
б) Переходом при ударе кинетической энергии	и мяча в потенциальную.					
в) Переходом при ударе потенциальной энерги	ии мяча в кинетическую.					
г) Переходом при ударе части механической э	нергии мяча в тепловую.					
16. Тело массой 10 кг поднимают вверх по	наклонной плоскости силой 1,4 Н.					
Угол наклона 45°. Чему равен коэффициент т	рения?					
a) 0,2	б) 0,02					
в) 2	г) 0,14					
17. Какая сила действует на тело массой 10 к	г, если это тело движется согласно					
уравнению: $x=4t^2-12t+6$.						
a) 90 H	б) 80 H					
в) 70 Н	г) 60 Н					
18. Какой мощности электродвигатель необхо	одимо поставить на лебедку, чтобы					
она могла поставить груз массой 1,2 т на высо	ту 20 м за 30 с?					
а) 8кВт	б) 72 кВт					
в) 3,6 кВт	г) 720 кВт					
19. Какая формула отражает основной	закон динамики вращательного					
движения?						
a) $F = m \cdot a$	6) v = x'(t)					
B) $w = \varphi'(t)$	$_{\Gamma})$ T= $\mathcal{T}\cdot\mathcal{E}$					
20. Ракета массой 5 т поднимается на высоту	10 км за 20 с. Чему равна сила тяги					
двигателя ракеты?						
a) $2.5 \cdot 10^5 \text{ H}$	б) 3· 10 ⁵ Н					
B) $4.5 \cdot 10^5 \mathrm{H}$	г) 5,5· 10 ⁵ H					

Движение материальной точки. Метод кинетостатики

Тестовое задание

ТЕХНИЧЕСКАЯ МЕХАНИКА. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ДИНАМИКА

Движение материальной точки. М	Четод кинетостатики	
--------------------------------	----------------------------	--

-				-		-
- 1	e	8.4	-	7	7	-
- 1	_	IAI	а	- 4	4	_

Вариант 1

Вопросы	Ответы	Код
1. К двум материальным точкам $m_1 = 2 \ \mathrm{kr} \ \mathrm{i} \ m_2 = 8 \ \mathrm{kr}$ приложены одинаковые силы. Сравнить величины ускорений, с которыми будут двигаться эти точки.	$a_1 = \frac{1}{2}a_2$	1
	$a_1 = a_2$	2
	$a_1 = 2a_2$	3
	$a_1 = 4a_2$	4
2. Свободная материальная точка, масса которой равна $8\ \text{кr}$, движется прямолинейно согласно уравнению $S=2,5t^2\ .$ Определить действующую на нее силу.	F = 16 H	1
	F = 20 H	2
	F = 40 H	3
	F = 80 H	4
3. Точка M движется криволинейно и неравномерно. Выбрать формулу для расчета нормальной составляющей силы инерции. $M = v$	ma	1
	mer	2
	$m\frac{v^2}{r}$	3
	$m\sqrt{(\varepsilon r)^2+(\upsilon^2/r)^2}$	4
4. Определить силу натяжения троса барабанной лебедки, перемещающего вверх груз массой 100 кг с ускорением $a=4 \text{ M/c}^2$.	400 H	1
	981 H	2
	1381 H	3
	1621 H	4
5. Чему равна сила давления автомобиля на мост при скорости $v = 20 \text{ м/c}$, когда он находится на середине моста, если вес автомобиля $G = 35 \text{ кH}$, а радиус кривизны моста $r = 800 \text{ м}$?	27,25 кН	1
	33,22 кН	2
	35 кН	3
	36,75 кН	4

Трение. Работа и мощность

<u>Тестовое задание</u>

ТЕХНИЧЕСКАЯ МЕХАНИКА. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ДИНАМИКА

Вопросы	Ответы	Код
1. Определить работу силы тяжести при перемещении груза из положения A в положение B по наклонной плоскости ABB . Трением пренебречь. $AB = 2 \text{ m};$ $BB = 1 \text{ m};$ $G = 100 \text{ H}.$	30 Дж	1
	-30 Дж	2
v 45° B	100 Дж	3
A 30°	-130 Дж	4
2. Определить работу торможения за один оборот колеса, если коэффициент трения между тормозными колодками и колесом $f=0,1$. Сила прижатия колодок $Q=100~{\rm H.}$	-6,2 Дж	1
	-12,6 Дж	2
	25 Дж	3
	–18,4 Дж	4
3. Определить полезную мощность мотора лебедки при подъеме груза $G=1$ кH на высоту 10 м за 5 с.	1 кВт	1
	1,5 кВт	2
	2 кВт	3
	2,5 кВт	4
4. Точильный камень $d=0,4$ м делает $n=120$ об/мин. Обрабатываемая деталь прижимается силой $F=10$ Н. Какая мощность затрачиватся на шлифование, если коэффициент трения колеса о деталь $f=0,25$?	6,2 Вт	1
	12,5 Вт	2
	24,9 Вт	3
	62,4 Вт	4
5. Вычислить КПД механизма лебедки по условию вопроса 3, если известна мощность электродвигателя лебедки $P = 2,5$ кВт.	0,5	1
	0,75	2
	0,8	3
	0,9	4

Раздел 3. Сопротивление материалов

Основные положения

<u>Тестовое задание</u>

ТЕХНИЧЕСКАЯ МЕХАНИКА. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Основные положения, метод сечений, напряжения	Тема 2.1	риант
Вопросы	Ответы	Код
1. Прямой брус нагружается внешней силой <i>F</i> . После снятия нагрузки его форма и размеры полностью	Незначительные	1
восстанавливаются. Какие деформации имели место в данном случае?	Пластические	2
	Упругие	3
	Остаточные	4
2. Как называют способность конструкции сопротивляться упругим деформациям?	Прочность	1
	Жесткость	2
	Устойчивость	3
	Выносливость	4
3. По какому из уравнений, пользуясь методом сечений, можно определить продольную силу в сечении?	$Q_x = \sum F_{kx}$	1
	$Q_y = \sum F_{ky}$	2
	$N = \sum F_{kz}$	3
	$M_k = \sum M_z(F_k)$	4
4. Пользуясь методом сечений, определить величину поперечной силы в сечении <i>I–I</i> .	2 кН	1
	4 кН	2
	6 кН	3
	7 кН	4
5. Какие напряжения возникают в поперечном сечении I – I бруса под действием крутящего момента M_k ? σ — нормальное напряжение. τ — касательные напряжения.	reconquest mor reconsidered	1
	σ	2
	τ, σ	3
	$\sqrt{\sigma^2 + \tau^2}$	4

Растяжение и сжатие

<u>Тестовое задание</u>

ТЕХНИЧЕСКАЯ МЕХАНИКА. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Растяжение и сжатие 1. Основные механические характеристики

Тема 2.2

Вариант 1

Вопросы	Ответы	Код
1. Как называется и обозначается напряжение, при котором деформации растут при постоянной нагрузке?	Предел прочности, σ_B	1
	Предел текучести, $\sigma_{\scriptscriptstyle T}$	2
	Допускаемое напряжение, [σ]	3
	Предел пропорциональности, $\sigma_{пц}$	4
2. Определить допускаемое напряжение, если: $F_{\Pi \mathfrak{U}}=1,6 \text{ kH};$ $F_{\mathfrak{T}}=2 \text{ kH};$ $F_{\mathfrak{max}}=5,0 \text{ kH}.$ запас прочности $s=2$ площадь поперечного сечения $A=40 \text{ мм}^2.$	25 МПа	1
	20 МПа	2
	50 МПа	3
	62,5 МПа	4
3. Определить максимальное удлиннение в момент разрыва, если: начальная длина образца 200 мм, а длина в момент разрыва 240 мм.	20%	1
	17%	2
	0,25%	3
	12%	4
4. Выбрать основные характеристики прочности материала	σ_{B}, σ_{T}	1
	$\sigma_{\scriptscriptstyle T}$, $\sigma_{\scriptscriptstyle \Pi II}$	2
	$\sigma_{\Pi \mathfrak{U}}, \sigma_B$	3
	δ, ψ	4
5. Проверить прочность материала, если: максимальное напряжение в сечении σ = 240 МПа $\sigma_{\Pi \mu}$ = 380 МПа; σ_{T} = 400 МПа; σ_{B} = 640 МПа; запас прочности s = 1,5.	$\sigma < [\sigma]$	1
	$\sigma = [\sigma]$	2
	σ>[σ]	3
	Данных недостаточно	4

Практические расчеты на срез и смятие

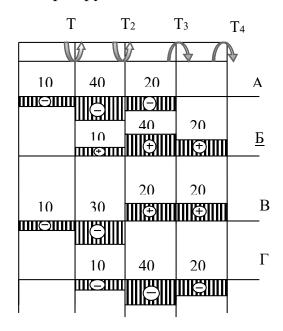
Тестовое задание

ТЕХНИЧЕСКАЯ МЕХАНИКА. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Практические расчеты на срез и смятие	Тема 2.3	Вариант :			
Вопросы	Ответы	Код			
1. Листы соединены болтом, поставленным без зазора. Соединение нагружено растягивающей силой $F = 50,4 \text{ kH}.$ Рассчитать величину площади среза болта, если	629 мм ²				
$d_c = 21 \text{ mm};$ l = 45 mm; $\delta = 20 \text{ mm}.$ $1/2F$	346 mm ²	2			
d _c F	66 мм²	3			
1/2F	420 mm ²	4			
2. Выбрать формулу для расчета напряжения сдвига в поперечном сечении болта (рисунок к вопросу 1).	$\sigma = \frac{N}{A}$	1			
	$\tau = \frac{Q}{A}$	2			
42 **	$\tau = \frac{M_z}{W_p}$	3			
	$\sigma = \frac{Q}{A}$				
3. Рассчитать площадь смятия внутреннего листа	346 mm ²	1			
соединения (рисунок к вопросу 1), нагруженного растягивающей силой.	420 mm ²	2			
	525 мм ²	3			
	$840~\mathrm{mm}^2$	4			
4. Проверить прочность на смятие внутреннего листа	$\sigma_{\rm cm} < [\sigma_{\rm cm}]$	1			
соединения (рисунок к вопросу 1), если допускаемое напряжение смятия материала листа — 120 МПа.	$\sigma_{\rm CM} > [\sigma_{\rm CM}]$	2			
Остальные данные для расчета — в вопросе 1.	$\sigma_{\rm cm} = [\sigma_{\rm cm}]$	3			
	Для ответа данных недостаточно				
5. Из расчета заклепок на срез определить допускаемую нагрузку на соединение. $d=16$ мм; $\delta_1=18$ мм; $\delta_2=20$ мм; $\left[\tau_{\rm CP}\right]=100$ МПа; $\left[\sigma_{\rm CM}\right]=240$ МПа.	20,1 кН	1			
	40,2 кН	2			
	28,8 кН	3			
	61,1 кН	4			

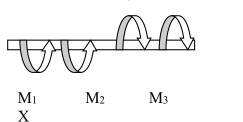
Геометрические характеристики плоских сечений

<u>Тестовое задание</u>


ТЕХНИЧЕСКАЯ МЕХАНИКА. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Вопросы	Ответы	Код
. В каком случае значение I_{x} минимально? $y_{_{\parallel}}$	A	1
y	Б	2
100 200	В	3
$A \qquad \qquad \mathcal{B} \qquad \qquad \mathcal{B} \qquad \qquad \mathcal{G}$	Γ	4
. Рассчитать момент инерции сечения относительно оси <i>y</i> .	$428\cdot 10^4\mathrm{mm}^4$	1
* * * * * * * * * * * * * * * * * * *	$572 \cdot 10^4 \mathrm{mm}^4$	2
6 4 0 x	$214 \cdot 10^4$ мм 4	3
100	286 · 10 ² мм ⁴	4
. Определить полярный момент инерции кольца, если осевой момент инерции равен $I_x = 6$ см ⁴ .	3 cm ⁴	1
y y	6 cm ⁴	2
	12 cm ⁴	. 3
	18 cm ⁴	4
. Определить координату x_c центра тяжести равнополочного уголка.	260 мм	1
70 × 70 × 8	198 мм	2
<u>№18</u>	158,2 мм	3
x_{C}	210,2 мм	4
5. Рассчитать осевой момент инерции двутавра относительно оси, проходящей через основание.	350 см ⁴	1
y V	879,2 см ⁴	2
<u>x</u> x No 12	438,2 cm ⁴	3
$\frac{1}{x_1}$	1317,2 cm ⁴	4

Кручение


Тестовое задание

- 1. Какой вид деформации называется кручением?
- а) Это такой вид деформации, при котором в поперечном сечении возникает внутренний силовой фактор крутящий момент.
- б) Это такой вид деформации, при котором на гранях элемента возникают касательные напряжения.
- в) Это такой вид деформации, при котором в поперечном сечении возникает внутренний силовой фактор продольная сила.
- г) Это такой вид деформации, при котором в поперечном сечении возникает внутренний силовой фактор поперечная сила
- 2. На рисунке изображен брус, нагруженный четырьмя моментами T_1 = 10 кH ·м; T_2 = 30 кH·м; T_3 = 20 кH·м; T_4 = 20 кH·м. В каком случае правильно построена эпюра крутящих моментов?

- 3. Какого допущения не существует в теории кручения бруса?
- а) Поперечные сечения бруса, плоские и нормальные к его оси до деформации, остаются плоскими и нормальными к оси и при деформации.
- б) Поперечное сечение остается круглым, радиусы не меняют своей длины и не искривляются.
- в) Материал бруса при деформации следует закону Гука.
- г) Материал однороден и изотропен.
- 4. Что называется крутящим моментом?
- а) Произведение силы, действующей на тело, на квадрат площади сечения.
- б) Момент касательных сил, возникающих в поперечном сечении.

- в) Произведение силы на плечо.
- г) Произведение массы тела на квадрат расстояния но оси кручения.
- 5. Если $M_1 = 5 \text{ кH} \cdot \text{м}$; $M_2 = 10 \text{ кH} \cdot \text{м}$; $M_3 = 20 \text{ кH} \cdot \text{м}$, то чему равен момент X?

a) – 5 кН⋅ м

б) 10 кН ·м

в) - 15 кН⋅ м

г) 20 кН⋅ м

- 6. Что такое чистый сдвиг?
- а) Это такой вид деформации, при котором возникают только касательные напряжения на противоположных гранях выделенного элемента, равные по модулю и противоположные по знаку.
- б) Это такой вид деформации, при котором в поперечном сечении возникает только один силовой фактор касательные напряжения.
- в) Это такой вид деформации, при котором в поперечном сечении возникают только поперечные силы.
- г) Это такой вид деформации, при котором в поперечном сечении возникает только один силовой фактор продольная сила.
- 7. Какая формула является законом Гука при сдвиге?

a)
$$\tau = G \cdot \gamma$$

6)
$$\mathfrak{S} = E \cdot \mathcal{E}$$

в)
$$F = -k \cdot \triangle x$$

$$\Gamma) E = \frac{k \cdot x^2}{2}$$

- 8. Рассчитайте значение касательного напряжения для бруса круглого сечения, у которого полярный момент сопротивления $W_p = 81,7~\text{cm}^2$, а крутящий момент равен $M_\kappa = 3,8~\text{kH}\cdot\text{m}$
- a) 0,046 Па

б) 21,5 Па

в) 21,5·10⁻⁹Па

г) 46 МПа

Изгиб

Тестовое задание

ТЕХНИЧЕСКАЯ МЕХАНИКА. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Тема 2.5

Вариант 1

Изгиб 1. Определение внутренних силовых факторов (сосредоточенная нагрузка)

(сосредоточенная нагрузка)	1ema 2.5 Ba				
Вопросы	Ответы	Код			
1. Выбрать участок чистого изгиба.	1-й участок				
22 KH·M ¥ 32 KH	2-й участок	2			
32 KH 10 KH	3-й участок	3			
1 2 3 4	4-й участок	4			
2. Выбрать формулу для расчета изгибающего момента в сечении $3-3$.	$F_1 z_3 - m_1 + F_2 (z_3 - 3) - F_3$	1			
F_1 F_3 3 F_4 B C	$-F_1z_3 - m_1 - F_2(z_3 - 3) - F_3(z_3 - 6)$	2			
$\frac{3}{4}$ $\frac{3}$	$F_1 z_3 + m_1 + F_2 (z_3 - 3) - F_3$	3			
x z	$-F_1z_3 - m_1 + F_2(z_3 - 3) - F_3(z_3 - 6)$	4			
3. Определить величину изгибающего момента в точке Γ	54 кH · м	1			
слева (схема к вопросу 2), если	98 кН⋅м	2			
$F_1 = 10 \text{ kH}; F_2 = 20 \text{ kH}; F_3 = 28 \text{ kH};$	62 кН ∙ м	3			
$m_1 = 18 \text{ кH} \cdot \text{м}; m_2 = 36 \text{ кH} \cdot \text{м}; m_3 = 5 \text{ кH} \cdot \text{м}.$	90 кН ⋅ м	4			
поперечной силы для изображенной балки. 15 кН·м 29,5 кН 0,5 кН 10 кН 20 кН	A	1			
0,5 4 M 4 M 2 M 2 M 2 M 20 A	Б	2			
36 E		1,3212			
0,5 20 B	В	3			
0,5 0 2 2 7					
10 36 40 E	Γ	4			
5. Из представленных в вопросе 4 эпюр выбрать эпюру	Б	1			
изгибающих моментов для балки.	В	2			
	Д	3			
	E	4			

Раздел 4 Детали машин.

Основные положения

Устный опрос по вопросам

- 1. Перечислите и прокомментируйте основные требования к деталям машин.
- 2. Основные виды материалов, применяемых при изготовлении деталей машин. Их характеристики и области применения.

Вариант 1

3. Основные определения деталей машин.

Общие сведения о передачах Основные положения

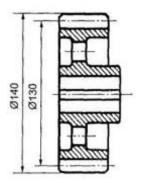
<u>Тестовое задание</u> Тема: Общие сведения о передачах

Вопросы	Ответы	Koz
1. Среди представленных на схемах передач выбрать цепную передачу и определить ее передаточное число, если $z_1=18$; $z_2=72$; $z_3=17$; $z_4=60$; $z_5=1$; $z_6=36$; $z_7=35$; $z_8=88$	Передача 1—2; 4	1
	Передача 3—4; 3,53	2
	Передача 5—6; 2,5	3
ми <u>т</u> 5	Передача 7—8; 2,5	4
2. Определить момент на ведущем валу изображенной передачи, если мощность на выходе из передачи 6,6 кВт; скорость	440 H · м	1
на входе и выходе 60 и 15 рад/с соответственно; $K\Pi Д = 0.96$	110 Н⋅м	2
	1760 Н - м	3
\times \longrightarrow ω_2, P_2	115 Н⋅м	4
3. Определить передаточное отношение второй ступени двух- ступенчатой передачи, если $\omega_{\rm BX}=155$ рад/с; $\omega_{\rm BMX}=20,5$ рад/с; $z_1=18;\ z_2=54$	7,51	1
$\bigcap_{z=1}^{\infty} -10, \ \zeta_2 = 54$	3	2
ω_{BX} z_2	2,52	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,5	4
. Определить требуемую мощность электродвигателя, если мощность на выходе из передачи 12,5 кВт; КПД ременной передачи 0,96; КПД червячного редуктора 0,82	12 кВт	1
птп	9,84 кВт	2
	15,24 кВт	3
(m)	15,88 кВт	4
. Как изменится мощность на выходном валу передачи (см.	Увеличится в 2 раза	1
исунок к заданию 3), если число зубьев второго колеса z_2 величится в 2 раза?	Уменьшится в 2 раза	2
b pasa.	Не изменится	3
	Увеличится в 4 раза	4

Фрикционные и ременные передачи

Тестовое задание

- 1) Какая ременная передача имеет больший КПД?
- а) Плоскоременная;
- b) Клиноременная;
- с) С натяжным роликом.
- 2) Какие плоские ремни наиболее часто применяют в машинах?
- а) Кожаные;
- b) Прорезиненные;
- с) Шерстяные.
- 3) Какая ветвь открытой ременной передачи испытывает при работе большее напряжение?
- а) Ведущая;
- b) Ведомая.
- 4) От чего зависит усталостное разрушение ремня?
- а) От его буксования;
- b) От его перегрева;
- с) От его циклического изгиба при огибании шкива.
- 5) Как классифицировать фрикционные передачи по принципу передачи движения и способу соединения ведущего и ведомого звеньев?
- а) Зацеплением;
- b) Трением с непосредственным контактом;
- с) Передача с промежуточным звеном.

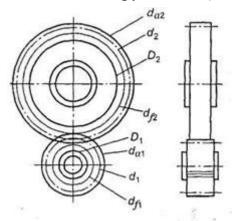

Зубчатые и цепные передачи

Тест по разделу «Зубчатые передачи»

1 вариант

- 1. Применяются ли (как правило) в общем машиностроении для изготовления зубчатых колес бронза, латунь?
- 1. Да
- 2. Нет
- 2. Что называется корригированием?
- 1. Дополнительная обработка поверхности зуба с целью улучшения зацепления по профилю зуба
- 2. Улучшение свойств зацеплений путем очерчивания рабочего профиля зубьев различными участками эвольвенты той же основной окружности

- 3. Способ, применяемый для увеличения долговечности зубчатых колес при изнашивании и заедании
- 3. Как называется окружность (см. рис.), диаметр которой D 140 мм?



- 1. Начальная окружность
- 2. Окружность вершин зубьев
- 3. Делительная окружность
- 4. Окружность впадин
- 4. Какой профиль имеют зубья передачи, показанной на рисунке?

- 1. Эльвовентный
- 2. Циклоидальный
- 3. Зацепление Новикова
- 4. Эти профили в машиностроении не используются
- 5. Какой угол зацепления принят для стандартных зубчатых колес, нарезанных без смещения
- 1) 15
- 2) 20
- 3) 25
- 4) Любой
- 6. Рассчитать диаметр вершин зубьев (мм) ведомого колеса прямозубой передачи, если $z_1 = 20$; $z_2 = 50$; m = 4 мм
- 1)88
- 2) 208
- 3)80

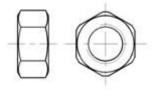
- 4) 200
- 5) 190
- 7. По какой окружности (см. рис.) обычно измеряют шаг зубьев

- 1. d_{a1}
- 2. d₂
- 3. D₂
- 4. d_{a2}
- 5. d₁

Валы и оси. Муфты

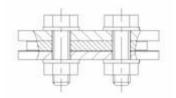
Тестовое задание

Вопросы	Ответы	Код
1. Как называется элемент деталей <i>1</i>	Буртик	1

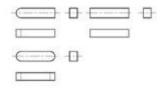

1		
VIIA IV	Шейка	2
	Шпоночный паз	3
	Галтель	
\(\frac{\psi_1}{\psi}\) \(\frac{\psi_2\left(2\left)}{\psi}\)		
1 - 1/4		4
2 11-2	П	
2.Для чего используют выделенный цветом	Для осевой фиксации	1
элемент Конструкции вала?	Пля науктурования колосо	
Конструкции вала:	Для центрирования колеса	2
	на	
	валу Для удобства сборки	3
		3
	Для передачи вращающего момента от вала на колесо	4
turnun anna anna anna anna anna anna anna	или наоборот	4
3.Выбрать формулу для расчета на прочность	или наоборот	
детали І	$\tau = \frac{M_{\rm K}}{1} < [\tau]$	1
1 —	$\tau = \frac{M_{\kappa}}{W_{n}} \le [\tau_{\kappa}]$	I
	υ	
	$\tau = \frac{Q}{A} \le [\tau]$	2
	$\tau = \frac{1}{4} \leq [\tau]$	2
	$\sigma = \frac{M_{\rm H}}{2} \leq \sigma_{\rm H}$	2
	$W_{-} \stackrel{\circ}{=} U_{\mathrm{H}}$	3
	$\sigma = \frac{M_{_{\rm H}}}{W_{_{\rm H}}} \le \sigma_{_{\rm H}}$	
	$\sigma = \frac{IV}{I} \leq [\sigma]$	4
	A	
4.Среди изображенных конструкций	а	1
определите ось		
	б	2
	В	3
	<i>D</i>	
6		
A		
	т.	4
8	Γ	7
A		
2		
5.Указать основной критерий	Статическая прочность при	
работоспособности валов	изгибе	1
Pacetoenoconocin barios	Сопротивление усталости	2
	Статическая прочность при	
		2
	совместном действии $M_{ m H}$ и	3
	$M_{ m K}$	4
	Устойчивость	4

Соединения деталей машин

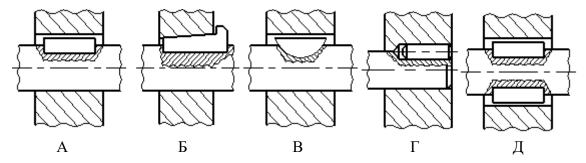
<u>Тестовое задание</u>


Тест по теме «Разъемные соединения»

- 1. Угол профиля метрической резьбы.....
- $1) 20^0$
- $2)\ 30^{0}$
- $3)45^{0}$
- $4)60^{0}$
- 2. Для какой резьбы угол между гранями витка равен нулю?
- 1. Метрической
- 2. Трапецеидальной
- 3. Прямоугольной
- 4. Упорной
- 3. Какие резьбы относятся к крепежным?
- 1. Метрическая
- 2. Упорная
- 3. Прямоугольная
- 4. Трапецеидальная
- 4. Для какой резьбы коэффициент рабочей высоты профиля равен 0,5?
- 1. Упорной
- 2. Трапецеидальной
- 3. Треугольной
- 4. Прямоугольной
- 5. Какая деформация является определяющей при расчете резьбы на прочность?
- 1. Растяжение и изгиб
- 2. Растяжение и срез
- 3. Срез и смятие
- 4. Смятие и изгиб
- 6. Как называется деталь, показанная на рисунке?



- 1. Болт
- 2. Винт
- 3. Шпилька
- 4. Гайка


7. Как называется соединение, показанное на рисунке?

- 1. Болтовое
- 2. Резьбовое
- 3. Разъемное
- 4. Винтовое
- 8. Как называются детали, показанные на рисунке?

- 1. Шпонки
- 2. Шлицы
- 3. Штифты
- 4. Шпонки призматические
- 9. Что называется шагом резьбы?
- 1. Расстояние между двумя одноименными точками резьбы одной и той же винтовой линии
- 2. Расстояние между двумя одноименными точками двух рядом расположенных витков резьбы
- 10. Наибольшие силы трения возникают в резьбах.
- 1) трапецеидальных
- 2) треугольных
- 3) прямоугольных
- 11. Шпоночное соединение предназначено для передачи между валом и ступицей.
- 1) растягивающих сил
- 2) радиальных сил
- 3) изгибающего момента
- 4) вращающего момента
- 12. Соединение шпонкой изображено на рисунке

- 1) сегментной
- 2) призматической
- 3) цилиндрической
- 4) клиновой

5. КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ КАЧЕСТВА ЗНАНИЙ

Вариант №1

Фамилия, имя обучающегося	
Группа	
Учебная дисциплина (междисциплинарный курс):	
При выполнении теста необходимо внимательно прочитать вопросы,	-
выбрать и записать правильные ответы в бланк ответов.	
Время выполнения 40 минут.	

относительно некоторой точки О, если задана только равнодействующая этих сил и ее плечо а, относительно этой точки?

- 1) Нельзя определить
- 2) Можно определить
- 3) Прежде нужно определить модуль
- 4) Определить нужно вначале направление
- 2. Укажите, как называется деталь, которая ограничивает перемещение другой детали?
- 1) реакция
- связь
- 3) тело
- 4) ограничитель
- 3. Укажите, сколько имеет реакций связи неподвижный шарнир?
- 1) одна
- <mark>2) две</mark>
- 3) три
- 4) четыре

4. Приложение к твердому телу совокупности сил, которые уравновешиваются, приводит к:

- 1. Смещение равнодействующей.
- 2. Никаких изменений не происходит.
- 3. Нарушение равновесия тела.
- 4. Уравновешение тела.
- 5. Угловое ускорение это:
- 1. Изменение скорости точки за единицу времени.
- 2. Изменение пути за единицу времени.
- 3. Изменение угловой скорости за единицу времени.
- 4. Изменение угла поворота за единицу времени.
- 6. Статика это раздел теоретической механики, которая изучает:
- 1. Поведение тел при воздействии на них внешних сил.
- 2. Поведение тел при воздействии на них внутренних сил.
- 3. Равновесие тел под действием сил.
- 4. Движение тел под действием сил.

7. Если система трех непараллельных сил находится в равновесии, то:

- 1. Все силы находятся в одной плоскости и не пересекаются линиями действия.
- 2. Силы пересекаются в одной точке и принадлежат одной плоскости.
- 3. Все силы находятся в разных плоскостях.
- 4. Силы равны между собой.

8. Момент силы относительно точки на плоскости:

- 1. Произведение модуля силы на кратчайшее расстояние между вектором силы и точкой;
- 2. Произведение модуля силы на синус угла между вектором силы и осью;
- 3. Произведение модуля силы на косинус угла между вектором силы и осью;
- 4. Проекция силы на ось.

9. Основные понятия динамики точки:

- 1. Перемещение, ускорение, скорость;
- 2. Верного ответа нет;
- 3. Скорость, траектория, пройденный путь;
- 4. Сила, масса, ускорение.

10. Укажите, момент – это произведение силы на

1) ладонь

цействием внешних сил?
11. Укажите, как называется изменение формы и размеров детали под
4) 30°
3) 45°
2) 60°
<mark>1) 90°</mark>
11. Укажите, под каким углом находится плечо к линии действия силы
<mark>4) плечо</mark>
3) кисть
2) локоть

- 1) деформация
- 2) напряжение
- 3) пластичность
- 4) упругость
- 12. Укажите, как называется процесс, если после снятия нагрузки деталь восстановила свою первоначальную форму и размеры?
- 1) деформация
- 2) напряжение
- 3) пластичность
- 4) упругость
- 13. Укажите, как называется метод для определения внутренних силовых факторов?
- 1) разрезов
- 2) сечений
- 3) проекций
- 4) моментов
- 14. Укажите, что обозначается буквой N в сопромате?
- 1) продольная сила
- 2) поперечна сила
- 3) крутящий момент
- 4) изгибающий момент
- 15. Укажите, какую деформацию испытывает деталь, если внутри детали возникают только поперечные силы?
- 1) растяжения

- 2) среза и смятия
- 3) кручения
- 4) изгиба

16. Укажите, как называется величина напряжений, до которой материал работает хорошо и долго?

- 1) предел текучести
- 2) допускаемое напряжение
- 3) предел прочности
- 4) допускаемая нагрузка

17. Укажите, Какие напряжения возникают при смятии внутри детали?

- 1) нормальные
- 2) касательные
- 3) прямые
- 4) линейные

18. Укажите, что возникает при чистом изгибе в поперечном сечении детали?

- 1) продольная сила
- 2) поперечная сила
- 3) крутящий момент
- 4) изгибающий момент

19. Что нужно взять, чтобы определить эффект действия пары сил?

- 1) Произведение модуля силы на плечо.
- 2) Величину момента пары и направление вращения.
- 3) Плечо пары и направление
- 4) Направление вращения и модуль

20. Назвать деформацию при кручении

- 1) Сжатие
- 2) Угол сдвига
- 3) Угол закручивания
- 4) Смещение

21. Укажите, как называется изделие, собранное из отдельных деталей?

- 1) деталь
- 2) сборочная единица
- 3) узел

22. Укажите, как называется машина, предназначенная для изменения формы и размеров предмета?

- 1) технологическая
- 2) транспортная
- 3) двигатель
- 4) контрольно-управляющая

23. Укажите, как называется способность детали сопротивляться разрушению при трении о другую деталь?

- 1) прочность
- 2) усталость
- 3) износостойкость
- 4) экономичность

24. Укажите, что является рабочим органом ременной передачи? 78

- 1) каток
- 2) шкив
- 3) звездочка
- 4) шестерня

25. Укажите, какие бывают ременные передачи по форме сечения ремня?

- 1) плоскоременная
- 2) круглоременная
- 3) клиноременная
- 4) все ответы верны

Бланк ответов

Номер	1	2	3	4	5	6	7	8	9	10
задания										
Номер										
ответов										
Номер	11	12	13	14	15	16	17	18	19	20
задания										
Номер										
ответов										
Номер	21	22	23	24	25					

помер										
ответов										
Количество баллов Оценка										
Вариант №2										
Фамилия, им	ия обуч	чающ	егося							
Группа										
Учебная дисциплина (междисциплинарный курс):										

При выполнении теста необходимо внимательно прочитать вопросы, выбрать и записать правильные ответы в бланк ответов. Время выполнения 40 минут.

1. Добавление к существующей системе сил совокупности сил, которые уравновешиваются, приводит к:

- 1. Никаких изменений не происходит.
- 2. Смещение равнодействующей.
- 3. Нарушение равновесия системы.
- 4. Уравновешенность системы.
- 2. Действие связей на тело может быть заменено:
- 1. Реакцией;

задания

- 2. Уравновешивающей;
- 3. Равнодействующей;
- 4. Системой сил.
- 3. Как формулируется основной закон динамики?
- 1. Произведение массы материальной точки и вектора ее ускорение равняется векторной сумме действующих на материальную точку сил.
- 2. Силы, которые действуют на тело, двигают его ускоренно.
- 3. Тело двигается под действием силы равномерно и прямолинейно.
- 4. Ускорения, которые получает тело, пропорционально действующим силам.
- 4. В кинематике ускорением точки называют векторную величину, которая равняется:
- 1. Отношению скорости к интервалу времени, за которое это изменение произошло;
- 2. Отношению изменения скорости к интервалу времени, за которое это изменение произошло;

- 3. Произведения изменения скорости на интервал времени, за которое это изменение произошло;
- 4. Отношению изменения скорости к изменению перемещения.

5. Количественное измерение механического взаимодействия материальных тел зовут:

- 1. Связью.
- 2. Скоростью.
- 3. Ускорением.
- <mark>4. Силой.</mark>

6. Не изменяя действия силы на тело, можно ли перенести ее параллельно в другую точку?

- 1. Нет.
- 2. Можно, прибавив пару сил с моментом, который равен моменту силы относительно точки и направлен в противоположную сторону.
- 3. Да, без ограничений.
- 4. Можно, прибавив еще одну силу так, чтобы образовалась пара сил направленная в противоположную сторону.

7. Если точка двигается по траектории так, что в любые промежутки времени она проходит равные отрезки пути, то такое движение называется:

- 1. Равномерным.
- 2. Равноускоренным.
- 3. Вращательным.
- 4. Криволинейным.

8. Аксиома параллелограмма сил декларирует, что две силы приложенные к телу в точке:

- 1. Можно заменить одной равнодействующей.
- 2. Двигают тело прямолинейно и равномерно.
- 3. Можно сложить алгебраически с учетом знаков.
- 4. Взаимно уничтожаются.

9. Силы параллельны, если:

- 1. Векторы их направлены в разные стороны.
- 2. Они не имеют равнодействующей.
- 3. Параллельные линии их действия.
- 4. Линии их действия проходят через одну точку.
- 10. Укажите, как называется сила, заменяющая несколько сил, приложенных в одной точке?

- 1) эквивалентная
- 2) распределительная
- 3) равнодействующая
- 4) суммарная

11. Укажите, как называется способ определения усилий в стержнях?

- 1) аналитический
- 2) математический
- 3) логический
- 4) универсальный

12. Укажите, какие виды нагрузок могут быть приложены к детали?

- 1) распределенная нагрузка
- 2) сосредоточенная сила
- 3) сосредоточенный момент
- 4) все ответы верны

13. Укажите, в какой точке пересечения находится центр тяжести треугольника?

- 1) диагоналей
- 2) медиан
- 3) биссектрис
- 4) радиусов

14. Укажите, какие существуют напряжения?

- 1) прямые
- 2) линейные
- 3) нормальные
- 4) сложные

15. Укажите, как называется деформация, если внутри детали возникает только продольная сила?

- 1) растяжения
- 2) среза и смятия
- 3) кручения
- 4) изгиба

16. Укажите, что обозначается в сопромате буквой $\Delta \ell$?

- 1) напряжения
- 2) относительное удлинение
- 3) абсолютное удлинение
- 4) модуль продольной упругости

17. Укажите, как называется величина напряжений, при которой материал детали разрушается?

- 1) предел текучести
- 2) допускаемое напряжение
- 3) предел прочности
- 4) допускаемая нагрузка

18. Момент силы относительно оси равен нулю

- 1) Когда сила параллельна оси.
- 2) Когда линия действия силы пересекает ось.
- 3) Когда линия действия перпендикулярно оси
- 4) Когда сила лежит на оси.

19. Эффект действия пары сил на тело.

- 1) Зависит от ее положения в плоскости.
- 2) Не зависит от ее положения в плоскости.
- 3) Зависит от состояния тела
- 4) Не зависит от состояния тела

20. Прямой брус нагружен силой F. Какую деформацию получил брус, если после снятия нагрузки форма бруса восстановилась до исходного состояния?

- 1) Упругую
- 2) Разрушающую
- 3) Остаточную
- 4) Незначительную
- 21. Укажите, как называется изделие, собранное из отдельных деталей, которое может выполнять определенную функцию?
- 1) деталь
- 2) сборочная единица
- 3) узел
- 4) машина

22. Укажите, как называется изделие, предназначенное для преобразования энергии или для перемещения?

- 1) деталь
- 2) сборочная единица
- 3) узел
- <mark>4) машина</mark>

23. Укажите, как называется свойство детали сохранять работоспособность до наступления предельного состояния?

- 1) надежность
- 2) безотказность
- 3) долговечность
- 4) ремонтопригодность

24. Укажите, как называется передача трением?

- 1) зубчатая
- 2) червячная
- 3) фрикционная
- 4) цепная

25. Укажите, что является рабочим органом фрикционной передачи?

- 1) шкив
- <mark>2) каток</mark>
- 3) звездочка
- 4) шестерня

Бланк ответов

Номер	1	2	3	4	5	6	7	8	9	10
задания										
Номер										
ответов										
Номер	11	12	13	14	15	16	17	18	19	20
задания										
Номер										
ответов										
Номер	21	22	23	24	25					
задания										

Номер					
ответов					

Критерии оценивания результатов контроля качества знаний: за каждое правильно выполненное задание обучающийся получает 1 балл, максимальное количество баллов 10.

Процент результативности (правильных ответов)	Отметка
85-100%	5 (отлично)
75-84%	4 (хорошо)
65-74%	3 (удовлетворительно)
менее 50%	2 (неудовлетворительно)

6. КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Предметом оценки являются умения и знания. Контроль и оценка осуществляются с использованием следующих форм и методов: практическое задание в виде задачи по дисциплине и устного ответа по теоретическим вопросам.

Количество вариантов задания для экзаменующегося-35 вариантов

Время на подготовку ответов по заданиям билета -40 мин.

Время на ответ -5 мин.

Время на дополнительные вопросы (не более двух) – 3мин.

Оборудование:

Эталоны ответов

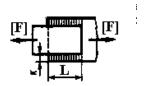
Экзаменационная ведомость.

ПЕРЕЧЕНЬ

Теоретических вопросов и практических заданий для проведения промежуточной аттестации по дисциплине *ОП.04 Техническая механика* для студентов специальности *13.02.13* Эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) Теоретические вопросы

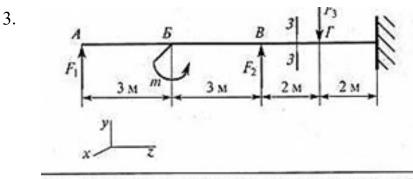
- 1. Основные понятия и определения статики: Механическое движение. Равновесие.
- 2. Понятие о деформации и упругом теле.
- 3. Классификация машин. Кинематические пары и цепи.
- 4. Основные понятия и определения статики: Материальная точка. Абсолютно твердые и деформируемые тела
- 5. Основные допущения и гипотезы (в сопромате)
- 6. Основные требования к машинам и деталям машин
- 7. Основные понятия и определения статики: Сила-вектор. Система сил. Эквивалентность сил.
- 8. Метод сечений. Виды деформаций
- 9. Краткие сведения о стандартизации и взаимозаменяемости деталей

машин


- 10. Аксиомы статики
- 11. Продольные силы при растяжении и сжатии. Построение эпюр продольных сил.
- 12. Виды соединений. Разъемные и неразъемные соединения
- 13. Связи и их реакции
- 14. Напряжения в поперечных сечениях растянутого (сжатого) стержня.
- 15. Виды передач в деталях машин и их назначение
- 16. Геометрический метод сложения сил, приложенных в одной точке.
- 17. Расчеты на прочность при растяжении и сжатии.
- 18. Виды зубчатых передач. Передаточное отношение.
- 19. Проекция силы на ось. Проекция векторной суммы на ось.
- 20. Деформация при упругом растяжении и сжатии.
- 21. Элементы теории зубчатого зацепления
- 22. Аналитическое определение значения и направления равнодействующей плоской системы сходящихся сил (метод проекций).
- 23. Закон Гука.
- 24. Косозубые передачи. Достоинства и недостатки, область применения.
- 25. Уравнения равновесия плоской системы сходящихся сил
- 26. Коэффициент Пуассона
- 27. Редукторы. Виды. Особенности расчётов. Достоинства и недостатки, область применения.
- 28. Пара сил и ее действие на тело. Эквивалентность пар.
- 29. Механические испытания материалов.
- 30. Ременные передачи. Виды. Особенности расчётов, область применения.
- 31. Сложение и равновесие пар сил на плоскости.
- 32. Понятие о срезе и смятии. Условия прочности.
- 33. Клиноременные передачи. Виды. Особенности расчётов. Достоинства и недостатки, область применения.
- 34. Момент сил относительно точки и оси.
- 35. КРУЧЕНИЕ: Чистый сдвиг.
- 36. Цепные передачи. Виды. Особенности расчётов, достоинства и недостатки, область применения.
- 37. СИСТЕМА ПРОИЗВОЛЬНО РАСПОЛОЖДЕННЫХ СИЛ: Приведение силы к точке.
- 38. КРУЧЕНИЕ: Эпюры крутящих моментов.
- 39. Вариаторы. Виды. Особенности расчётов. Достоинства и недостатки, область применения.
- 40. СИСТЕМА ПРОИЗВОЛЬНО РАСПОЛОЖДЕННЫХ СИЛ: Приведение плоской системы сил к данной точке.
- 41. Напряжения и деформации при кручении вала
- 42. Валы и оси. Вращательное движение. Виды. Особенности расчётов. Достоинства и недостатки, область применения.
- 43. Теорема о моменте равнодействующей (теорема Вариньона)
- 44. Расчеты на прочность и жесткость при кручении
- 45. Шпоночные соединения. Подбор шпонок. Особенности расчётов,

область применения.

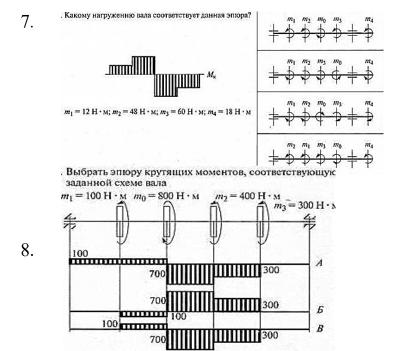
- 46. Уравнения равновесия плоской системы сил.
- 47. ИЗГИБ: Прямой, косой, чистый изгиб
- 48. Передача винт-гайка. Общие сведения о винтовых механизмах. Силовые соотношения и КПД винтовой пары.
- 49. Опорные устройства балочных систем.
- 50. Поперечные силы и изгибающие моменты в сечениях балок
- 51. Понятие о расчете передачи на износостойкость. Основные параметры и расчетные коэффициенты.
- 52. Пространственная система сил. Шесть уравнений равновесия пространственной системы сил.
- 53. Эпюры поперечных сил и изгибающих моментов
- 54. Червячные передачи. Общие сведения о червячных передачах. Достоинства и недостатки, область применения. Материалы червяков и червячных колес. Геометрические соотношения и силы, действующие в зацеплении. КПД червячной передачи.
- 55. Центр тяжести. Центр тяжести сложных геометрических фигур
- 56. Нормальные напряжения при изгибе
- 57. Храповые механизмы.
- 58. Основные понятия кинематики. Уравнение движения точки.
- 59. Расчеты на прочность при изгибе
- 60. Подшипники качения, подшипники качения. Область применения, достоинства и недостатки. Выбор подшипников качения.
- 61. Скорость точки. Ускорение точки
- 62. Понятие о линейных и угловых перемещениях при изгибе
- 63. Муфты. Виды муфт. Область применения.
- 64. Виды движения точки в зависимости от ускорения
- 65. Понятие о сложном деформируемом состоянии
- 66. Краткие сведения о методах изготовления зубчатых колес.
- 67. Аксиомы динамики
- 68. Понятие о теориях прочности
- 69. Виды разрушения зубьев зубчатых колес.
- 70. Работа и мощность
- 71. Понятие о продольном изгибе
- 72. Кривошипно-шатунный механизм
- 73. Метод кинетостатики для материальной точки
- 74. Расчеты на усталость, усталостное разрушение. Циклы напряжений. Кривая напряжений.
- 75. Кулачковые механизмы.


Практические задания

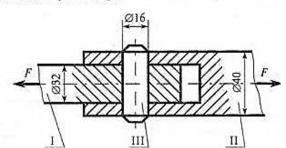
1.

Из расчета фланговых швов длиной L на срез определить допускаемую нагрузку[F] если известен катет шва k и допускаемое напряжение $[\tau'_{CP}]$. Дано: $[\tau'_{CP}] = 100$ МПа, L = 50 мм, k = 7 мм.

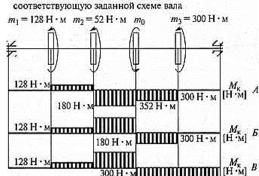
2. Определить модуль m и шаг p зацепления прямозубого цилиндрического колеса без смещения, если число зубьев его Z, а диаметр вершин зубьев d a. Дано: Z = 48, d a = 250 мм.

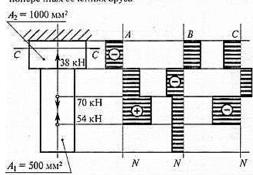

Определить величину изгибающего момента в точке Γ если $F_1 = 22$ кH; $F_2 = 18$ кH; $F_3 = 36$ кH; m = 36 кH·м

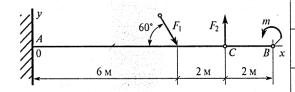
Определить вращающий момент T $_2$ на тихоходном валу редуктора, зная частоту его вращения n $_2$, мощность на ведущем валу P $_I$ и общий КПД η редуктора. Дано: n $_2$ = 240 мин $^{-1}$, P $_I$ = 6 кВт, η = 0,94 (принять π / 30 \approx 0,1).


5. Быстроходный вал двухступенчатого зубчатого редуктора имеет частоту вращения n_{1} . Определить угловую скорость ω_3 тихоходного вала, если известны числа зубьев колес редуктора.

Дано: n_1 = 720 мин ⁻¹ , Z_1 = 20, Z_2 = 60, Z_3 = 20, Z_4 = 80 (принять π / 30 \approx 0,1).


6. Путем расчета стержня болта на растяжение определить диаметр метрической резьбы с крупным шагом затянутого болтового соединения, если известна осевая сила Q и допускаемое напряжение $[\sigma_P]$. Дано: Q = 32кH, $[\sigma_P] = 100$ Мпа


9. Стержни I и II соединены штифтом III и нагружены растягивающими силами. Рассчитать величину площади среза штифта


10. Выбрать элюру кругящих моментов,

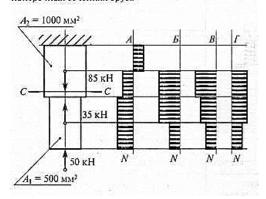
. Выбрать соответствующую эпюру продольных сил в 11. поперечных сечениях бруса

Выбрать наиболее подходящую систему уравнений 12. равновесия для определения реакций в опорах изображенной балки

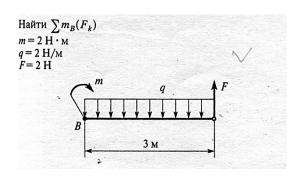
$$\sum F_{kx} = 0; \sum F_{ky} = 0; \sum M_B = 0$$

$$\sum F_{kx} = 0; \sum F_{ky} = 0; \sum M_A = 0$$

$$\sum_{B} F_{kx} = 0; \sum_{A} F_{ky} = 0; \sum_{A} M_{A} = 0$$

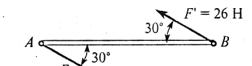

$$\sum_{B} F_{kx} = 0; \sum_{A} M_{A} = 0; \sum_{A} M_{B} = 0$$

$$\sum_{A} M_{A} = 0; \sum_{A} F_{ky} = 0; \sum_{A} M_{C} = 0$$


$$\sum M_A = 0; \sum F_{ky} = 0; \sum M_C = 0$$

13.

Выбрать соответствующую этюру продольных сил в поперечных сечениях бруса



14.

15.

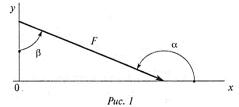
. Момент пары сил $M = 104 \; \mathrm{H \cdot M}$. Найти AB

16.

Какие силы из заданной системы образуют пары сил? $F_1 = F_4 = F_5 \\ F_2 = F_3 = F_6$

F_1	<u> </u>	
	F_3	F_2
F_6	45°	45°
. 1	F_5	F_4

 $(ar{F}_1\,;\,ar{F}_4\,)$ и $(ar{F}_2\,;\,ar{F}_3\,)$


 $(ar{F}_2\,;\,ar{F}_3\,)$ и $(ar{F}_4\,;\,ar{F}_5\,)$

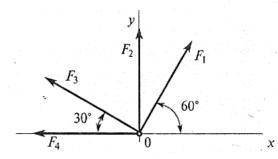
 $(\overline{F}_4; \overline{F}_5)$ и $(\overline{F}_2; \overline{F}_5)$

 $(ar{F}_2\,;\,ar{F}_5\,)$ и $(ar{F}_2\,;\,ar{F}_6\,)$

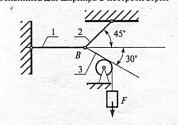
17.

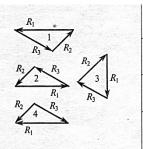
Выбрать выражение для расчета проекции силы F на ось 0y

Fcosα
–Fcosβ
Fsinß
 –Fcosα


Рассчитать проекцию равнодействующей системы 18. сходящихся сил на ось 0х

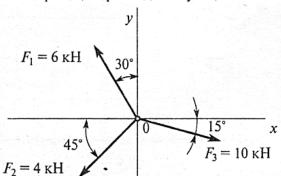
$$F_1 = 25 \text{ kH}$$


$$F_2 = 30 \text{ kH}$$


$$F_1 = 25 \text{ kH}$$

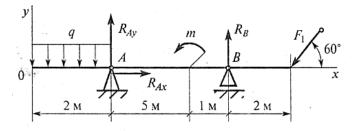
 $F_2 = 30 \text{ kH}$
 $F_3 = 40 \text{ kH}$

$$F_4 = 8 \text{ kH}$$



Груз F находится в равновесии. Указать, какой из греугольников для шарнира B построен верно 19.

20. Определить проекцию равнодействующей на ось x

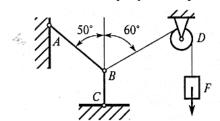


21. . Определить вертикальную составляющую реакции в опореA

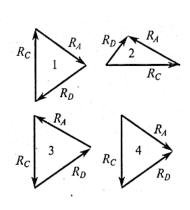
$$F_1 = 10 \text{ kH}$$

$$F_1 = 10 \text{ kH}$$

 $m = 8 \text{ kH} \cdot \text{M}$


$$q = 2 \text{ kH/M}$$

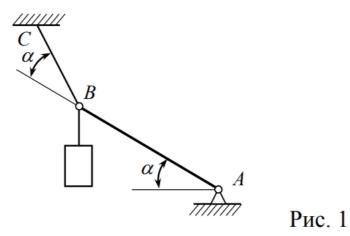
22.



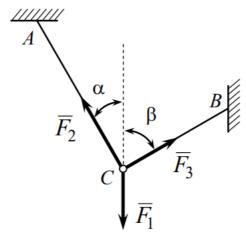
4. Груз F находится в равновесии. Указать, какой из треугольников сил для шарнира В построен верно

R - соответствующая реакция связи

Выбрать наиболее подходящую систему уравнений

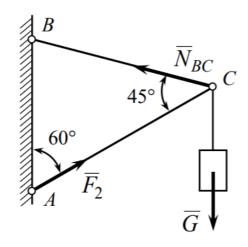


24.

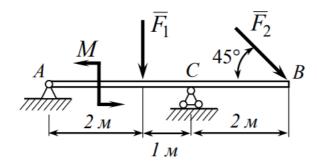


$\sum m_A = 0; \ \sum m_B = 0; \ \sum m_C = 0$
$\sum m_A = 0; \sum F_{kx} = 0; \sum F_{ky} = 0$
$\sum F_{kx} = 0; \ \sum m_A = 0; \ \sum m_B = 0$
$\sum F_{kx} = 0; \ \sum F_{ky} = 0; \ \sum m_B = 0$

25. Один конец стержня AB закреплен шарнирно в точке A. К другому концу B привязан груз весом 50 H. Стержень удерживается в равновесии веревкой BC. Определить натяжение веревки BC и реакцию стержня AB, если угол $\alpha = 30^{\circ}$ (рис. 1).

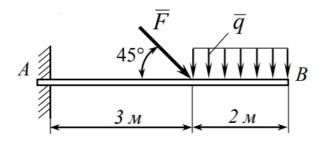


26. Определить силу F₃ равновесной плоской системы сходящихся сил:

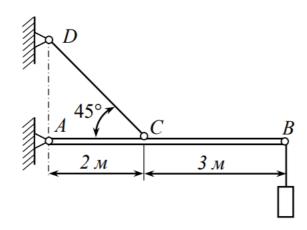

$$\alpha = 30^{\circ}, \ \beta = 60^{\circ},$$

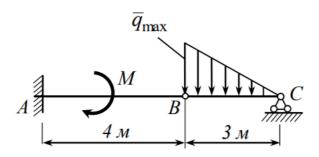
 $F_2 = 15$ H. $F_3 = ? (7,76)$

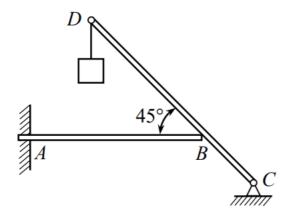
27. Дана равновесная плоская система сходящихся сил определить N_{BC}:

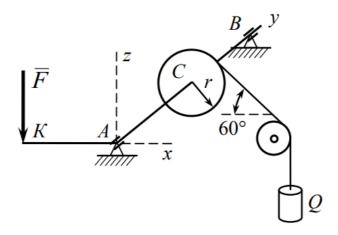


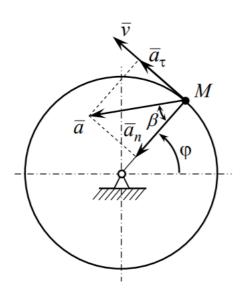
$$F_2 = 25$$
H. $N_{BC} = ?$


28. Определить реакции опор A и C балки AB, находящейся под действием двух сосредоточенных сил $F1=1\,\mathrm{kH},\,F2=2\,\mathrm{kH}$ и пары сил c моментом $M=1\,\mathrm{kH}\cdot\mathrm{m}$.


. Определить реакции заделки консольной балки AB, находящейся под действием распределенной нагрузки q = 2 кH/m и сосредоточенной силы F = 3 kH


. Невесомая балка AB с грузом на конце удерживается в горизонтальном положении стержнем CD. Определить усилие в стержне CD, если вес груза G = 1 kH


31. На стержень AB действует пара сил с моментом $M = 10 \text{ кH} \cdot \text{м}$, на стержень BC линейно распределенная нагрузка интенсивностью $q_{\text{max}} = 5 \text{кH/m}$. Найти момент в заделке A.


32. Однородный брус CD весом 1 кH свободно опирается в точке B на однородную балку AB весом 2 кH, причем DB = 2BC. К концу D бруса подвешен груз весом G = 3 кH. Чему равен момент в заделке A, если длина балки AB = 2 м

33. Рабочий поднимает груз Q = 500~H~c помощью ворота; радиус барабана r = 10~cm, длина рукоятки AK = 50~cm, AC = CB = 50~cm. Определить давление F на рукоятку и реакции узлов A и B, если рукоятка AK находится в горизонтальном положении

34. Вращение маховика в период пуска определяется уравнением 3 ϕ =1/3 t^3 , где t – в c, ϕ – в рад. Определить модуль и направление ускорения точки, отстоящей от оси вращения на расстоянии 50 см, в тот момент, когда ее скорость равна 8 м/с

Приложение 1. Ключи к контрольно-оценочным средствам для текущего контроля

Раздел 1

Стандартизация.

Вариант 1.

$$1. - 6) 2. - B) 3. - B) 4. - B) 5. - a)$$

Вариант 2

- 1.б) 2.в) 3.в) 4.а 5.б) 6.а) 7.б) 8. г) 9.а) 10.б) 11.г) 12.а) 13.а) 14.а) 15.б) **Метрология.**
- 1) B; 2) Б; 3) B; 4) B; 5) Г; 6) A; 7)A; 8) Б; 9)B; 10) Б; 11)B; 12)Г; 13)В; 14) В; 15) А; 16) Д; 17)В; 18)А; 19)Д; 20Д.

Сертификация.

1.a) 2.a) 3.б) 4.б) 5.б) 6.a) в) 7.в) 8.в) 9.а) 10.в) 11.б) 12.а) 13.б) 14.а) 15.а) б) 16.а) б) 17.б) 18.б) 19.а), г) 20.б) 21. в) 22.а)

Раздел Статика

1 - Б	6 - B	11 - Б
2 - Б	7 - B	12 - Γ
3 - Γ	8 - B	13 - Б
4 - B	9 - A	14 - Γ
5 - Γ	10 - Γ	15 - Б

Кинематика

Тест 1		Tec	г 2
1 - B	6 - B	1 - A	6 - A
2 - B	7 - B	2 - A	7 - B
3 - B	8 - Γ	3 - B	
4 - Б	9 - Γ	4 - B	
5 - Γ	10 - Γ	5 - Б	

Раздел Динамика

1 - A	6 - Б	11 - A	16 - Б
2 - Γ	7 - B	12 - Γ	17 - Б
3 - A	8 - B	13 - B	18 - A
4 - Б	9 - Б	14 - Б	19 - Γ
5 - B	10 - Γ	15 - Γ	20 - A

Кручение

Ty Telline	
1 - A	6 - A
2 - Б	7 - A
3 - Γ	8 - Γ
4 - Б	
5 - A	

Валы и оси

Danbi n och		
№	Вариант ответа	
п/п		
1	1	
2	4	
3	3	
4	3	
5	2	

ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ К КОМПЛЕКТУ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

	Дополнения и изменения к комплекту КОС на	_ учебный г	од по
дисци	иплине		
	В комплект КОС внесены следующие изменения:		
	Дополнения и изменения в комплекте КОС обсуждены н	на заседании	ПЦК
« <u> </u>			
Предо	седатель ПЦК/		