ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ЧЕРЕМХОВСКИЙ ГОРНОТЕХНИЧЕСКИЙ КОЛЛЕДЖ ИМ. М.И. ЩАДОВА»

РАССМОТРЕНО УТВЕРЖДАЮ

на заседании ЦК «Информатики и ВТ» Протокол № 6 «04» февраля 2025 г. Председатель: Коровина Н.С.

Зам. директора О.В. Папанова « 26» мая 2025 г.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по практическим занятиям студентов учебной дисциплины

EH.02 Дискретная математика с элементами математической логики 09.02.07 Информационные системы и программирование

Разработал: Литвинцева Е.А.

СОДЕРЖАНИЕ

		CTP.
1.	ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
2.	ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ	4
3.	СОДЕРЖАНИЕ ПРАКТИЧЕСКИХ ЗАНЯТИЙ	4
4.	ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ	18
	ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЁННЫХ В МЕТОДИЧЕСКИЕ УКАЗАНИЯ	19

1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Методические указания по практическим занятиям учебной дисциплине «Дискретная математика с элементами математической логики» составлены в соответствии с учебным планом и рабочей программой дисциплины по специальности 09.02.07 Информационные системы и программирование.

Цель проведения практических занятий: формирование практических умений, необходимых в последующей профессиональной и учебной деятельности.

Методические указания являются частью учебно-методического комплекса по учебной дисциплине и содержат:

- тему занятия (согласно тематическому плану учебной дисциплины);
- цель;
- оборудование (материалы, программное обеспечение, оснащение, раздаточный материал и др.);
- методические указания (изучить краткий теоретический материал по теме практического занятия);
 - ход выполнения;
 - форму отчета.

В результате выполнения полного объема практических работ студент должен уметь:

- Применять логические операции, формулы логики, законы алгебры логики;
- Формулировать задачи логического характера и применять средства математической логики для их решения;
- Применять современные пакеты прикладных программ при решении профессиональных задач.

При проведении практических работ применяются следующие технологии и методы обучения:

- 1. проблемно-поисковых технологий
- 2. тестовые технологии

Оценка выполнения заданий практических занятий

«Отлично» - теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко.

«Хорошо» - теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками.

«Удовлетворительно» - теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки.

«**Неудовлетворительно**» - теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.

В соответствии с учебным планом и рабочей программы дисциплины «Дискретная математика и элементы математической логики» на практические (лабораторные) занятия отводится <u>28</u> часов.

2. ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

№ п/п	Тема практических занятий	Количество часов
1	Построение таблицы истинности для формулы логики	2
2	Упрощение формул логики с помощью равносильных преобразований	2
3	Представление булевой функции в виде совершенной ДНФ, совершенной КНФ	2
4	Представление булевой функции в виде совершенной ДНФ, совершенной КНФ	2
5	Проверка булевой функции на принадлежность к классам T0, T1, S, L, M; проверка множества булевых функций на полноту	2
6	Выполнение операций над множествами	2
7	Применение аппарата теории множеств для решения задач.	2
8	Исследование бинарных отношений на заданные свойства.	
9	Выполнение операций над предикатами	2
10	Выполнение операций и решение простейших уравнений в алгебре подстановок.	
11	Представление графов. Построение графов.	2
12	Представление графов. Построение графов.	2
13	Представление графов. Построение графов.	2
14	Построение диаграммы автомата по его таблице, запись таблицы автомата по его диаграмме.	2

3.СОДЕРЖАНИЕ ПРАКТИЧЕСКИХ ЗАНЯТИЙ Практическое занятие № 1

Тема: построение таблицы истинности для формулы логики

Цель: научиться строить таблицы истинности для формулы логики

Оборудование: тетрадь, ручка

Методические указания: выполните задание

Ход выполнения:

Залание:

1. Построить таблицу истинности для формулы логики:

1)
$$((x \rightarrow y) \sim y \lor x) / z$$
, 3) $(xy \sim z) \rightarrow (x \lor z)$
2. Построить таблицу истинности для ДНФ:
а) $x\bar{y} \lor xz \lor \bar{x}y\bar{z}$; д) $\bar{x}z \lor \bar{y} \cdot \bar{z} \lor xy\bar{z}$; е) $\bar{x}z \lor \bar{y} \lor \bar{z} \lor \bar{x}yz$; в) $x\bar{y} \lor xz \lor \bar{x}y\bar{z}$; ж) $\bar{x}z \lor \bar{y} \cdot \bar{z} \lor xy\bar{z}$; г) $\bar{x}y \lor \bar{y}z \lor x\bar{y} \cdot \bar{z}$; 3) $x\bar{z} \lor y\bar{z} \lor \bar{x}yz$.

1.Используя Мастер функций, начните заполнять таблицу:

	A	В	C	D	E
1	A	В	He A	A&B	А или В
2	ложь	ложь			

3	ложь	истина		
4	истина	ложь		
5	истина	истина		

2.

Используя

Мастер функций, продолжите заполнение таблицы.

- А) В ячейку С2 занесите формулу: =НЕ(А2).
 - В ячейку D2 занесите формулу: =И(A2;B2).

В ячейку Е2 занесите формулу: =ИЛИ(А2;В2).

- Б) Выделяйте ячейки С2:Е2.
- В) Скопируйте выделенный блок в ячейки С3:Е5.
- 3. Проверьте полученную таблицу.
- 4. Перейдите на лист 2.
- 5. Используя Мастер функций, постройте таблицу истинности функций

A v A v A v A, A & A & A & A вида:

A	В	А или А или А или А	АиАиАиА
ЛОЖЬ	ЛОЖЬ	= ИЛИ(А2;А2;А2;А2)	= U(A2;A2;A2;A2;)
ЛОЖЬ	ИСТИНА		
ИСТИНА	ЛОЖЬ		
ИСТИНА	ИСТИНА		

6 Перейдите на лист 3.

7. Используя Мастер функций, постройте таблицу истинности функций

А&¬А, А∨¬А вида:

A	HE A	А И НЕ А	А ИЛИ НЕ А
ЛОЖЬ	= HE (A2)	= M(A2; HE(A2))	=ИЛИ(А2; НЕ(А2))
ИСТИНА			

8. Перейдите на лист 4.

Используя Мастер функций, постройте таблицу истинности функций

$$\neg (A \lor B), \ \neg (A \& B), \ \neg \ A \lor \neg B, \neg \ A \& \ \neg B$$

Подсказка: формулы в ячейках будут таковы:

Ячейка C2: =HE(ИЛИ(A2;B2))

Ячейка D2 = HE(И(A2; B2))

Ячейка E2: = ИЛИ(HE(A2); HE(B2))

Ячейка F2: =И(НЕ(А2);НЕ(В2))

Найдите среди этих функций эквивалентные.

Используя Мастер функций, постройте таблицы истинности функций 9. Перейдите на лист 5.

 $\neg A \lor B$, $A \lor \neg B$, $\neg A \lor \neg B$.

Подсказка: формулы в ячейках будут таковы:

Ячейка C2: =ИЛИ(HE(A2);B2)

Ячейка D2: =ИЛИ(A2;HE(B2))

Ячейка E2: = ИЛИ(HE(A2); HE(B2))

Форма отчета: отчетная работа

Найдите функции, эквивалентные функциям $B \rightarrow A$, $A \rightarrow B$.

Практическое занятие № 2

Тема: Упрощение формул логики с помощью равносильных преобразований

Цель: научиться упрощать формулы логики с помощью равносильных преобразований.

Оборудование: тетрадь, ручка

Методические указания: выполните задание

Ход выполнения:

Залание:

Упростить формулу логики с помощью равносильных преобразований:

a)
$$\overline{xy} \lor (x \to y)x$$
;

$$\mathbf{\pi}$$
) xy $(x \sim y)$;

6)
$$(x \to y)(y \to \overline{x});$$

e)
$$(x \to \overline{y}) (x \sim y)$$
;

B)
$$(x \vee y)$$
 $(x \sim y)$;

ж)
$$(x \to \overline{y}) \vee \overline{x \vee y}$$

$$\Gamma$$
) $\overline{xy(x \to y)}$;

ж)
$$(x \to \overline{y}) \lor \overline{x \lor y};$$

3) $(\overline{x} \lor y \to (x \lor y))y.$

Форма отчета: отчетная работа

Практическое занятие № 3

Тема: представление булевой функции в виде совершенной ДНФ, совершенной КНФ

Цель: научиться представлять булеву функцию в виде совершенной ДНФ, совершенной КНФ

Оборудование: тетрадь, ручка

Методические указания: выполните задание

Ход выполнения:

Залание:

1. Представить булеву функцию в виде совершенной ДНФ:

a)
$$(x \sim y) (y \sim z) (z \sim x)$$
;

$$\exists (x \lor y \lor z)(x \to y);$$

6)
$$(\overline{x \to y})(x \sim \overline{yz})$$
;

e)
$$\overline{xy} \lor (x \to y) \sim z$$
;

B)
$$(x \to (y \to z)) \sim (x \to y);$$

ж)
$$(x \to (y \to z)) \sim \overline{yz}$$
;

$$\Gamma$$
) $(x \lor y)(y \lor z) \rightarrow (x \lor z)$;

3)
$$(x \rightarrow y \stackrel{-}{z}) \rightarrow (x \sim y)$$
.

2. Представить булеву функцию в виде совершенной КНФ:

a)
$$(x \to z) \to (x \lor y);$$

д)
$$((x \rightarrow y) \sim (y \rightarrow \bar{x}))z;$$

6)
$$(x \lor y) \rightarrow (x \rightarrow z)$$
;

e)
$$(x \to y) \sim (\overline{x} \to (\overline{y} \lor z));$$

B)
$$x \lor y \lor z \rightarrow (x \lor y)z$$
;

ж)
$$\overline{(x \sim y)(\overline{z} \vee y)}$$
;

$$\Gamma) (x \vee y)(y \to z)(z \sim x);$$

3)
$$\overline{x \vee y} \vee z \sim xz$$
.

Форма отчета: отчетная работа

Практическое занятие № 4

Тема: представление булевой функции в виде сокращенной ДНФ.

Цель: научиться представлять булеву функцию в виде сокращенной ДНФ.

Оборудование: тетрадь, ручка

Методические указания: выполните задание

Ход выполнения:

Задание:

1. Найти сокращенную ДНФ методом Блейка для функции:

a)
$$f = x_1 \overline{x_4} \vee \overline{x_1} x_2 \overline{x_3} \vee x_2 \overline{x_3} x_4;$$

д)
$$f = x_2 \overline{x_4} \vee \overline{x_1} \overline{x_2} x_3 \vee \overline{x_1} x_3 x_4;$$

6)
$$f = x_1 \overline{x_2} \vee \overline{x_1} \overline{x_3} \overline{x_4} \vee x_2 \overline{x_3} \overline{x_4}$$
;

e)
$$f = x_2 x_4 \lor x_1 x_2 x_3 \lor x_1 x_3 x_4$$
;

B)
$$f = x_3 x_4 \vee \overline{x_1} \overline{x_2} \overline{x_3} \vee \overline{x_1} \overline{x_2} \overline{x_4}$$
;

$$\mathfrak{K}) \ f = x_2 x_3 \vee x_1 x_2 x_4 \vee x_1 x_3 x_4;$$

$$f = \overline{x_1} \, \overline{x_3} \vee x_1 x_2 x_4 \vee x_2 x_3 x_4;$$

3)
$$f = \overline{x_1} x_2 \vee \overline{x_2} \overline{x_3} x_4 \vee x_1 \overline{x_3} x_4$$
.

2. Найти сокращенную ДНФ из КНФ

a)
$$f = (x_1 \vee \overline{x_2} \vee x_3)(\overline{x_1} \vee \overline{x_4})(x_2 \vee x_3 \vee \overline{x_4});$$

д)
$$f = (x_1 \vee \overline{x_2} \vee x_4)(x_1 \vee x_3)(x_2 \vee \overline{x_3} \vee x_4);$$

6)
$$f = (\overline{x_1} \lor x_2 \lor x_4)(\overline{x_1} \lor x_3 \lor \overline{x_4})(x_2 \lor \overline{x_3});$$

e)
$$f = (\overline{x_1} \vee x_2 \vee \overline{x_3})(\overline{x_2} \vee x_4)(\overline{x_1} \vee \overline{x_3} \vee x_4);$$

w) $f = (\overline{x_1} \vee \overline{x_4})(\overline{x_1} \vee x_2 \vee \overline{x_3})(\overline{x_2} \vee \overline{x_3} \vee x_4);$

B)
$$f = (\overline{x_1} \lor x_2 \lor \overline{x_3})(\overline{x_3} \lor x_4)(x_1 \lor x_2 \lor \overline{x_4});$$

 $f = (\overline{x_1} \lor \overline{x_2} \lor x_4)(x_3 \lor \overline{x_4})(x_1 \lor \overline{x_2} \lor x_3);$

3)
$$f = (\overline{x_2} \lor x_3 \lor \overline{x_4})(\overline{x_1} \lor \overline{x_4})(x_1 \lor x_2 \lor x_3)$$
.

3. Найти сокращенную ДНФ геометрически

a)
$$f = (0001\ 1111\ 1100\ 1111)$$
;

$$\pi$$
д) $f = (1100 1101 1110 1101);$

6)
$$f = (0111\ 0011\ 1011\ 1011);$$

e)
$$f = (0111 \ 0111 \ 1101 \ 0101);$$

B)
$$f = (1110\ 1011\ 1010\ 1011);$$

r) $f = (1111\ 1111\ 0100\ 0110);$

ж)
$$f = (1000 \ 1111 \ 0011 \ 1111);$$

3) $f = (1111 \ 1000 \ 1111 \ 1001).$

e)
$$f = (1010 \ 1010 \ 0010 \ 1010);$$

 \mathbf{x}) $f = (1111 \ 0000 \ 0000 \ 1011);$

B)
$$f = (1111 \ 1011 \ 0000 \ 0000);$$

3)
$$f = (1000\ 1000\ 1011\ 1011)$$
;

$$\Gamma$$
) $f = (1011 \ 1011 \ 1000 \ 1000);$

$$f = (1000\ 1000\ 1011\ 1011);$$

и) $f = (1001\ 1011\ 1001\ 1001);$

д)
$$f = (1000 \ 1101 \ 1000 \ 1000);$$

$$\kappa$$
) $f = (1101 \ 1101 \ 1000 \ 1000)$.

Форма отчета: отчетная работа

Практическое занятие № 5

Тема: Проверка булевой функции на принадлежность к классам Т0, Т1, S, L, M; проверка множества булевых функций на полноту

Цель: научиться проверять булеву функцию на принадлежность к классам Т0, Т1, S, L, M; проверять множество булевых функций на полноту (с помощью теоремы Поста)

Оборудование: тетрадь, ручка

Методические указания: выполните задание

Ход выполнения:

Задание:

- 1. Проверить булеву функцию на принадлежность к классам T₀, T₁, S, L, M
- a) $((x \lor y)\bar{x} \to y)\bar{z}$;

д) $(x \vee (y+z))(\overline{x} \vee (y \sim z))$;

6) $\overline{xz \to x} \lor y$;

e) $y \to \overline{z} \vee \overline{x(y+z)}$;

B) $y(\overline{xz} \to x)$;

ж) $x (v \sim z) \vee (v \rightarrow z)$;

 $\Gamma) \ \overline{x}(y \sim z) \vee x(y+z);$

- 3) $\overline{v(x \to (x \lor v)) + z}$.
- 2. Проверить множество булевых функций на полноту
- a) $\{x \cdot \overline{y}, x \sim yz\};$

д) $\{xy, x + y + z, \bar{x}\};$

6) $\{x \rightarrow y, x \rightarrow \overline{y} z\};$

e) $\{1, xy + z\}$;

B) $\{x \sim y, x + y + z, x \vee y\};$

ж) $\{x + y + z, xy, x \lor y \lor z\};$

 Γ) {0, x + y + z + 1, x (y + z);

3) $\{x \sim (y \vee z), y \rightarrow x \cdot z\}.$

Форма отчета: отчетная работа

Практическое занятие № 6

Тема: Выполнение операций над множествами

Цель: научиться выполнять операции над множествами.

Оборудование: тетрадь, ручка

Методические указания: выполните задание

Ход выполнения:

Залание:

- 1. Выполнить над множествами A и B операции: $A \cup B$, $A \cap B$, $A \setminus B$:
- a) $A = \{a, b, c, d\}, B = \{1, 2, b, d\};$

- д) $A = \{a, b, c, y, z\}, B = \{a, b, c, d\};$
- 6) $A = \{1, 2, 3, x, y\}, B = \{x, y, z, t\};$
- e) $A = \{1, 2, 4, 8, 16\}, B = \{1, 2, 3, 4\};$
- B) $A = \{1, 2, 3, 4, 5\}, B = \{1, 3, 5, 7, 9\};$
- \mathbf{x}) $A = \{a, b, 1, 2, 3\}, B = \{1, 2, c, d\};$
- Γ) $A = \{a, 1, b, 2, c\}, B = \{1, 2, 3, 4\};$
- 3) $A = \{x, y, z, t\}, B = \{x, y, 1, 2\}.$

- 2. Доказать равенства:
- a) $A \setminus (A \setminus B) = A \cap B$;

- Π) $A \setminus (B \cup C) = A \setminus B$) $\cap (A \setminus C)$;
- 6) $A \cup B = (A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B)$;
- e) $A \setminus B = A \setminus (A \cap B)$;

 $(A \cap B) \setminus (A \cap C) = A \cap (B \setminus C);$

ж) $(A \cap B) \setminus (A \cap C) = (A \cap B) \setminus C$;

 Γ) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$;

3) ($A \cup B$) $\cap A = A \cap B$.

Форма отчета: отчетная работа

Практическая работа № 7

Тема: Применение аппарата теории множеств для решения задач.

Цель: научиться применять аппарат теории множеств для решения задач.

Оборудование: тетрадь, ручка

Методические указания: выполните задание

Ход выполнения:

Задание:

Решить задачи:

а) В отделе научно-исследовательского института работают несколько человек, причем каждый из них знает хотя бы один иностранный язык. Шестеро знают английский, шестеро – немецкий, семеро – французский. Четверо знают английский и немецкий, трое – немецкий и французский, двое – французский и английский. Один человек знает все три языка. Сколько человек работает в отделе?

- б) В ожесточенном бою 70 из 100 пиратов потеряли глаз, 80- руку, 85 ногу, 40 глаз и руку, 50 глаз и ногу, 55 руку и ногу. Сколько пиратов потеряли глаз, руку и ногу?
- в) Исследователь рынка сообщает следующие данные. Из 1000 опрошенных 811 нравится шоколад, 752 мармелад, 418 зефир, 570 шоколад и мармелад, 356 шоколад и зефир, 348 мармелад и зефир, а 297 все три вида сладости. Показать, что в этой информации есть ошибки.
- г) На загородную прогулку поехали 92 человека. Бутерброды с колбасой взяли 48 человек, с сыром 38 человек, с ветчиной 42 человека, с сыром и колбасой 28 человек, с колбасой и ветчиной 31 человек, с сыром и ветчиной 26 человек. 25 человек взяли с собой все три вида бутербродов, а несколько человек вместо бутербродов взяли пирожки. Сколько человек взяли с собой пирожки?
- д) На вступительном экзамене по математике были предложены три задачи: по алгебре, планиметрии и стереометрии. Из 1000 абитуриентов задачу по алгебре решили 800, по планиметрии 700, а по стереометрии 600 абитуриентов. При этом задачи по алгебре и планиметрии решили 600 абитуриентов, по алгебре и стереометрии 500, по планиметрии и стереометрии 400. Все три задачи решили 300 абитуриентов. Существуют ли абитуриенты, не решившие ни одной задачи, и если да, то сколько их?

Форма отчета: отчетная работа

Практическое занятие № 8

Тема: Исследование бинарных отношений на заданные свойства.

Цель: научиться исследовать бинарные отношения на заданные свойства.

Оборудование: тетрадь, ручка

Методические указания: выполните задание

Ход выполнения:

Задание:

- 1. Исследовать бинарное отношение на рефлексивность, симметричность и транзитивность:
- a) $R = \{(m, n) \mid m, n \in \mathbb{N} \& m = n^2\};$
- д) $R = \{(x, y) \mid x, y \in R \& x > y\};$

6) $R = \{(x, y) \mid x, y \in R \& x \le y\};$

e) $R = \{(m, n) \mid m, n \in Z \& m = n + 2\};$

B) $R = \{(x, y) \mid x, y \in R \& x = y\};$

- ж) $R = \{(m, n) \mid m, n \in Z \& |m| = |n|\};$
- Γ) R = { $(m, n) \mid m, n \in \mathbb{N} \& m = 2n$ };
- 3) $R = \{(m, n) \mid m, n \in \mathbb{N} \& m^3 = n^3\}.$
- 2. Разбить множество $M = \{x, y, z, t\}$ на классы эквивалентности, если на множестве M задано отношение эквивалентности R:
- a) $R = \{(x, z), (x, x), (z, z), (z, x), (y, y), (t, t)\}$
- 6) $R = \{(x, z), (z, x), (x, y), (y, x), (y, z), (z, y), (t, t) (x, x) (y, y), (z, z)\};$
- B) $R = \{(y, z), (z, y), (x, x), (y, y), (z, z), (t, t)\};$
- Γ) R = {(x, y), (y, x), (x, x), (y, y), (z, z), (t, t)};
- д) $R = \{(x, t), (t, x), (x, x), (y, y), (z, z), (t, t)\};$
- e) $R = \{(x, z), (z, x), (y, t), (t, y), (x, x), (y, y), (z, z), (t, t)\};$
- ж) $R = \{(x, y), (y, x), (z, t), (t, z), (x, x), (y, y), (z, z), (t, t)\};$
- 3) $R = \{(y, z), (z, t), (t, y), (y, t), (t, z), (z y), (x, x), (y, y), (z, z), (t, t)\}.$

Форма отчета: отчетная работа

Практическое занятие № 9

Тема: Выполнение операций над предикатами

Цель: научиться выполнять операции над предикатами.

Оборудование: тетрадь, ручка

Методические указания: выполните задание

Ход выполнения:

Задание:

1. Записать область истинности предиката:

a) $x^2 > 29, x \in N$;

д) $|x| > 5, x \in \mathbb{N}$;

6) $x^2 - 2x - 3 > 0, x \in \mathbb{N}$;

e) $(|x| > 2) \rightarrow (|x| < 3)(x \in \mathbb{R});$

B) $(x > 3) \lor (x < -1)(x \in R)$;

ж) $(x > 2) \rightarrow (x < 2)(x \in R)$;

 Γ) $(x > 2) \lor (x < 2)(x \in \mathbb{R});$

3) $(|x| < 3) \land (x \ge 2)(x \in R)$.

2. Определить логическое значение следующих высказываний ($x, y \in \mathbb{R}$):

a)
$$\exists x \ln x < 0$$
; $\forall x \sqrt{x^2 + 2x + 1} = x + 1$; $\exists x \forall y y^2 > x$;

6)
$$\exists x \ \sqrt{x+2} = 1-x, \ \forall x \ x > 0; \ \exists x \ \forall y \ x^2 > \cos y;$$

B)
$$\exists x \ x^2 + 5x + 6 = 0$$
, $\forall x \quad \frac{x^3 - 3x^2 + 3x - 1}{x - 1} = x^2 - 2x + 1$; $\exists x \forall y |y| > x$;

r)
$$\exists x |x-1| = x+1$$
; $\forall x x^2 + 2x + 3 > 0$; $\exists x \forall y x^2 + y^2 > 25$;

д)
$$\exists x \ x^2 = 25 \ \forall x \ \frac{x^2 - 1}{x - 1} = x + 1 \ \exists x \forall y \ (x + y)^2 < 0;$$

e)
$$\exists x \, x^2 + x + 1 = 0 \ \forall x \, x^2 = 25 \ \exists x \, \forall y \, y^2 - x^2 \ge 0$$
;

ж)
$$\exists x \ 2^x \le 0 \ \forall x \ x^2 + 2x + 1 = (x+1)^2 \ \exists x \forall y \ \sqrt{x} - |y| \le 0;$$

3)
$$\exists x \ \sqrt{x} \le 0 \ \forall x \ \sqrt{x^2} = x \ \exists x \forall y |\sin y| \le x$$
.

3. Построить отрицание к предикатам:

a)
$$\exists x ((\forall v x^2 + v^2 > 4) \rightarrow (\forall v v^2 > x));$$

д)
$$\exists y ((\forall x \, x \ge 3) \land (\exists z \, z^2 + y^2 = 1));$$

6)
$$\forall x ((\exists y \ y > 3x) \land (\forall z \ z \le 5x));$$

e)
$$\forall x ((\exists y \ x < y) \rightarrow \forall z \ z^2 + x^2 > 1));$$

B)
$$\exists x ((\exists y \ y = x^2 + 5) \land (\forall y \ y - x = 2));$$

ж)
$$\exists x ((\forall y x + y = 5) \land (\exists y x + y < 0);$$

$$\Gamma) \ \forall x ((\exists y \ y = x^3) \land (\exists y \ y = \sqrt{x}));$$

3)
$$\forall x ((\forall y y = x^2) \rightarrow (\exists y y = 2x))$$
.

4. Формализировать предложения с помощью логики предикатов:

- а) Все рыбы, кроме акул, добры к детям.
- б) Некоторые остроумны только, когда пьяны.
- в) Всякий, в ком есть упорство, может изучить логику.
- г) Есть такие люди, которые спят днем, и нет человека, который не спит ночью.
- д) Всякий человек любит кого-нибудь, и никто не любит всех
- е) У всех людей, которые вечером долго сидят за компьютером, утром болит голова или плохое настроение.

Форма отчета: отчетная работа

Практическая работа № 10

Тема: Выполнение операций и решение простейших уравнений в алгебре подстановок.

Цель: научиться выполнять операции над подстановками; решать простейшие уравнения в алгебре подстановок.

Оборудование: тетрадь, ручка

Методические указания: выполните задание

Ход выполнения:

Задание:

Записать циклическое разложение подстановки и представить подстановку в графической форме

a)
$$A = \begin{vmatrix} 1234567 \\ 3741526 \end{vmatrix}$$
;

$$\Gamma$$
) A= $\begin{vmatrix} 1234567 \\ 5627134 \end{vmatrix}$;

ж)
$$A = \begin{vmatrix} 1234567 \\ 5716342 \end{vmatrix}$$
;
3) $A = \begin{vmatrix} 1234567 \\ 1756432 \end{vmatrix}$.

б)
$$A = \begin{vmatrix} 1234567 \\ 3417256 \end{vmatrix}$$
;
в) $A = \begin{vmatrix} 1234567 \\ 2563417 \end{vmatrix}$;

$$\Gamma$$
) $A = \begin{vmatrix} 1234567 \\ 5627134 \end{vmatrix}$;
д) $A = \begin{vmatrix} 1234567 \\ 4157362 \end{vmatrix}$;
e) $A = \begin{vmatrix} 1234567 \\ 6427513 \end{vmatrix}$;

3)
$$A = \begin{vmatrix} 1234567 \\ 1756432 \end{vmatrix}$$

B)
$$A = \begin{vmatrix} 1234567 \\ 2563417 \end{vmatrix}$$
;

e)
$$A = \begin{vmatrix} 1234567 \\ 6427513 \end{vmatrix}$$

2. Решить уравнение: 1) A·X=B; 2) X·A=B; 3)A·X·B=E и найти A·B; В-1, если

a)
$$A = \begin{vmatrix} 12345 \\ 14523 \end{vmatrix}$$
; $B = \begin{vmatrix} 12345 \\ 23514 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 31524 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 23451 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 41253 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 34152 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 43125 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 13521 \end{vmatrix}$;

6)
$$A = \begin{vmatrix} 12345 \\ 41253 \end{vmatrix}$$
; $B = \begin{vmatrix} 12345 \\ 34152 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 43125 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 13521 \end{vmatrix}$
B) $A = \begin{vmatrix} 12345 \\ 51324 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 25134 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 25143 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 24351 \end{vmatrix}$

B)
$$A = \begin{vmatrix} 12345 \\ 51324 \end{vmatrix}$$
; $B = \begin{vmatrix} 12345 \\ 25134 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 25143 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 24351 \end{vmatrix}$;

r)
$$A = \begin{vmatrix} 12345 \\ 35214 \end{vmatrix}$$
; $B = \begin{vmatrix} 12345 \\ 52431 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 35241 \end{vmatrix}$; $B = \begin{vmatrix} 12345 \\ 35241 \end{vmatrix}$.

a)
$$A = \begin{vmatrix} 45213 \\ 31524 \end{vmatrix}$$
; B) $A = \begin{vmatrix} 35241 \\ 42513 \end{vmatrix}$; $A = \begin{vmatrix} 53241 \\ 42513 \end{vmatrix}$; $A = \begin{vmatrix} 53241 \\ 42513 \end{vmatrix}$; $A = \begin{vmatrix} 25143 \\ 35421 \end{vmatrix}$; $A = \begin{vmatrix} 23145 \\ 15324 \end{vmatrix}$.

Форма отчета: отчетная работа

Практическая работа № 11-13

Тема: Представление графов. Построение графов. Цель: научить представлять и строить графы.

Оборудование: тетрадь, ручка

Методические указания: повторите теоретический материал, выполните задание

Ход выполнения:

Теоретический материал

Метрические характеристики графов

В теории графов применяются:

1. Матрица инцидентности. Это матрица А с п строками, соответствующими вершинам, и т столбцами, соответствующими рёбрам. Для ориентированного графа столбец, соответствующий дуге (х,у) содержит (-1) в строке, соответствующей вершине x и 1 в строке, соответствующей вершине y. Во всех остальных -0.

Петлю, т. е. дугу (x,x) можно представлять иным значением в строке x, например, x.

Если граф неориентированный, то столбец, соответствующий ребру (х,у) содержит 1, соответствующие х и у – нули во всех остальных строках.

- **2.** *Матрица смежности*. Это матрица n^*n где n число вершин, где b_{ij} = 1, если существует ребро, идущее из вершины x в вершину y и $b_{ij} = 0$ в противном случае.
- **3.** Пусть G=(X,U) связный граф, а x_i и x_j две его несовпадающие вершины. Длина кратчайшего маршрута, соединяющего вершины x_{i} и x_{j} (пути из x_{i} и x_{j}) называется *расстоянием* между вершинами $x_i u x_j$ и обозначается $d(x_i, x_j)$. Положим $d(x_i, x_j) = \infty$, если вершины x_i и x_j не соединены маршрутом (путем). Расстояние $d(x_i, x_i)$ удовлетворяет следующим аксиомам:
- 1) $d(x_i, x_i) = 0$;
- 2) $d(x_i, x_i) \ge 0$;
- $3)_{d(x_i,x_i)=0}$ тогда и только тогда, когда $x_i=x_j$;
- 4) $d(x_i, x_i) = d(x_i, x_i)$ для симметрических графов;
- 5) $d(x_i,x_i) + d(x_i,x_k) \ge d(x_i,x_k)$

Расстояние для графа G удобно задавать матрицей расстояний. *Матрицей расстояний* графа с n вершинами называется квадратная матрица D порядка n, элементы которой определяются следующим образом:

$$d_{ij} = \begin{cases} 0, \text{ если } x_i = x_j; \\ d(x_i, x_j), \text{ если } x_i \neq x_j. \end{cases}$$

4. Для фиксированной вершины x_i величина $e(x_i) = \max_{x_j \in X} d(x_i, x_j)$ называется

эксцентриситетом (отклоненностью) вершины _{хі}.

5. Максимальный среди эксцентриситетов вершин называется *диаметром* графа G и обозначается diam (G):

$$diam(G) = \max_{x_i \in X} e(x_i) = \max_{x_i \in X} \max_{x_j \in X} d(x_i, x_j)$$

6. Минимальный из эксцентриситетов вершин связного графа называется его *радиусом* и обозначается через r(G):

$$r(G) = \min_{x_i \in X} e(x_i) = \min_{x_i \in X} \max_{x_j \in X} d(x_i, x_j)$$

- 7. Вершина, имеющая минимальный эксцентриситет, называется центром графа.
- **8.** Для вершины X_i число $p(x_i) = \sum_{x_j \in X} d(x_i, x_j)$ называется *передаточным числом*.
- **9.** Вершина графа, которой соответствует минимальное передаточное число $\max_{x_i \in X} P(x_i)$ называется *медианой* графа.

Центров и медиан в графе может быть несколько.

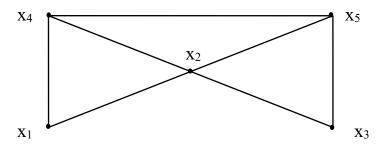


Рис. 1

<u>Пример</u>. Для графа, изображенного на рис.1 метрические характеристики определяются следующим образом:

$$\begin{array}{c} x_1 \, x_2 \, x_3 \, x_4 \, x_5 \\ x_1 \begin{pmatrix} 0 & 1 & 2 & 1 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 2 & 1 & 0 & 2 & 1 \\ x_4 \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 0 & 2 & 1 \\ 2 & 1 & 1 & 2 & 0 \\ 1 & 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 1 & 0 \end{pmatrix} \begin{array}{c} e(x_1) = 2 & P(x_1) = 6 \\ e(x_2) = 1 & P(x_2) = 4 \\ e(x_3) = 2 & P(x_3) = 6 \\ e(x_4) = 2 & P(x_4) = 5 \\ e(x_5) = 2 & P(x_5) = 5 \end{array}$$

Радиус графа равен 1, диаметр равен 2. Центр графа - вершина **X**₂; Медиана графа - вершина **X**₂.

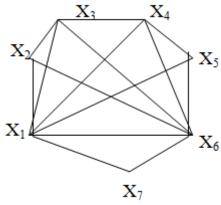
Задание 1:

Вариант 1

1. Дана матрица А. Постройте соответствующий ей граф, имеющий матрицу А своей матрицей смежности. Удалите из графа кратные ребра. Найдите матрицу инцидентности для построенного графа.

$$A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 2 & 0 & 1 \\ 1 & 3 & 1 & 0 \end{pmatrix}.$$

2. Определить метрические характеристики графа:

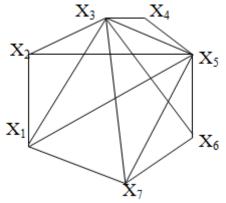


Вариант 2

1. Дана матрица А. Постройте соответствующий ей граф, имеющий матрицу А своей матрицей смежности. Удалите из графа кратные ребра. Найдите матрицу инцидентности для построенного графа.

$$A = \begin{pmatrix} 0 & 2 & 0 & 3 \\ 2 & 0 & 2 & 1 \\ 0 & 2 & 0 & 0 \\ 3 & 1 & 0 & 1 \end{pmatrix}.$$

2. Определить метрические характеристики графа:

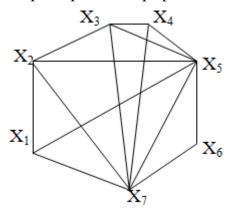

Вариант 3

1. Дана матрица А. Постройте соответствующий ей граф, имеющий матрицу А своей матрицей смежности. Удалите из графа кратные ребра. Найдите матрицу инцидентности для построенного графа.

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 1 & 2 \\ 0 & 3 & 2 & 0 \end{pmatrix}.$$

12

2. Определить метрические характеристики графа:



Вариант 4

1. Дана матрица А. Постройте соответствующий ей граф, имеющий матрицу А своей матрицей смежности. Удалите из графа кратные ребра. Найдите матрицу инцидентности для построенного графа.

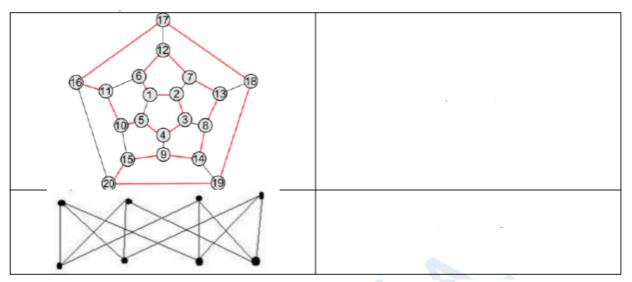
$$A = \begin{pmatrix} 0 & 3 & 1 & 1 \\ 3 & 0 & 0 & 1 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \end{pmatrix}.$$

2. Определить метрические характеристики графа:

Задание 2:

Вариант № 1

Задание 1. Выполните задание по образцу.


Изобразите графически:

G(V,E) - орграф.

 $V=\{1,2,3,4\}, E=\{(1,2),(4,3),(3,4),(3,1),(4,1)\}.$

Задание 2. Изобразите графы в соответствующих программах. Полученные графы сохранить в свои папки.

Граф	Программа
3 6 6 7 7 18 4 9 11 20 12 10 17 10 1	

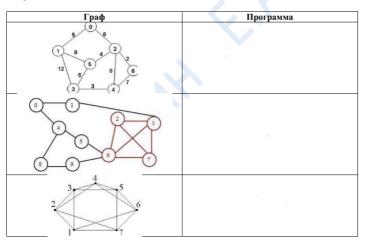
Вариант № 2

Задание 1. Выполните задание по образцу.

Изобразите графически:

G(V,E) - oprpa ϕ . $V=\{1,2,3,4,5\},\ E=\{(1,2),(4,3),(3,5),(5,1),(4,1)\}.$

Задание 2. Изобразите графы в соответствующих программах. Полученные графы сохранить в свои папки.

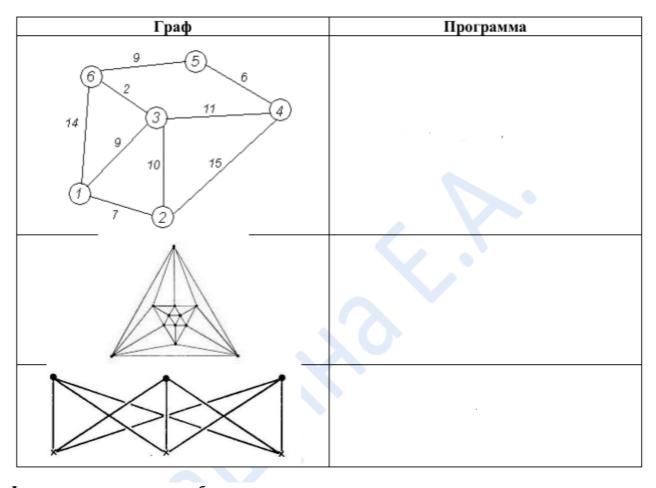

Граф	Программа
$v_1 = v_2 = 0$ $v_2 = 0$ $v_3 = 0$ $v_1 = 0$ $v_2 = 0$ $v_3 = 0$ $v_4 = 0$ $v_7 = 0$ $v_6 = 0$	
	_
1 2 3 4 8 7 6 5	

Вариант № 3

Задание 1. Выполните задание по образцу.

Изобразите графически: G(V,E) - орграф. $V=\{1,2,3,4,5\},\ E=\{(1,3),(2,3),(1,5),(2,4),(1,2)\}.$

Задание 2. Изобразите графы в соответствующих программах. Полученные графы сохранить в свои папки.



Вариант № 4

Задание 1. Выполните задание по образцу.

Изобразите графически: G(V,E) - орграф.

Задание 2. Изобразите графы в соответствующих программах. Полученные графы сохранить в свои папки.

Форма отчета: отчетная работа

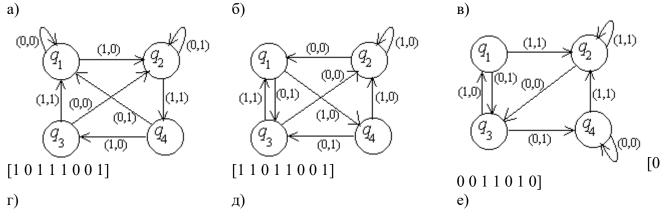
Практическая работа № 14

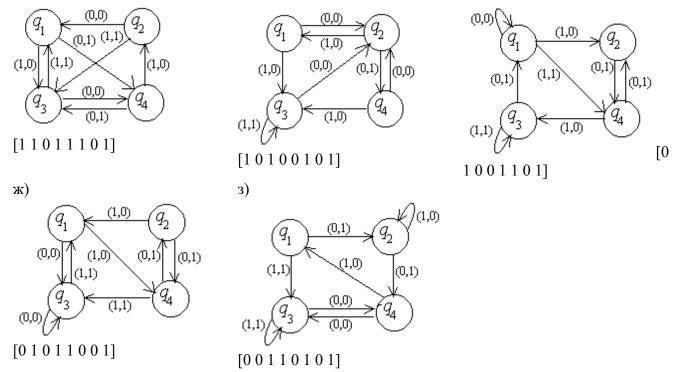
Tema: Построение диаграммы автомата по его таблице, запись таблицы автомата по его диаграмме.

Цель: научиться по таблице автомата строить его диаграмму, по диаграмме автомата записывать его таблицу

Оборудование: тетрадь, ручка

Методические указания: выполните задание


Ход выполнения:


Задание:

1. По таблице автомата построить его диаграмму:

1. По таблице автомата построить его диаграмму:											
a)						б)					
φ	0	1	Ψ	0	1	φ	0	1	Ψ	0	1
q_1	q_2	q_3	q_1	0	1	q_1	q_3	q_4	q_1	0	1
q_2	q_1	q_4	q_2	1	0	q_2	q_1	q_2	q_2	1	1
q_3	q_3	q_4	q_3	0	1	q_3	q_3	q_1	q_3	1	0
q_4	q_1	q_2	q_4	1	0	q_4	q_2	q_4	q_4	0	0
в)						L)					
φ	0	1	Ψ	0	1	φ	0	1	Ψ	0	1
q_1	q_1	q_4	q_1	0	1	q_1	q_4	q_3	q_1	1	1
q_2	q_3	q_2	q_2	1	0	q_2	q_2	q_1	q_2	0	0
q_3	q_4	q_1	q_3	0	0	q_3	q_4	q_1	q_3	0	0
q_4	q_2	q_3	q_4	1	1	q_4	q_2	q_3	q_4	1	1
д)						e)					
φ	0	1	Ψ	0	1	φ	0	1	Ψ	0	1
q_1	q_2	q_1	q_1	0	0	q_1	q_4	q_1	q_1	0	0
q_2	$q_{_4}$	q_1	q_2	0	1	q_2	q_2	q_3	q_2	1	1
q_3	$q_{_4}$	q_3	q_3	1	0	q_3	q_1	q_2	q_3	0	0
q_4	q_3	q_2	q_4	1	1	$q_{\scriptscriptstyle 4}$	q_3	q_4	q_4	1	1
ж)						3)					
φ	0	1	Ψ	0	1	φ	0	1	Ψ	0	1
q_1	q_1	q_2	q_1	1	0	q_1	q_3	q_2	q_1	1	0
q_2	q_4	q_3	q_2	1	1	q_2	q_4	q_3	q_2	0	0
q_3	q_3	q_4	q_3	0	1	q_3	q_2	q_1	q_3	1	1
$q_{\scriptscriptstyle 4}$	q_2	q_1	q_4	1	1	q_4	q_1	q_4	q_4	0	1

2. По диаграмме автомата записать его таблицу. По заданному входному слову записать соответствующее выходное слово.

Форма отчета: отчетная работа

4. ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

4.1 Основные электронные издания:

- О-1. Баврин, И. И. Дискретная математика. Учебник и задачник: для среднего профессионального образования / И. И. Баврин. Москва: Издательство Юрайт, 2024. 193 с. (Профессиональное образование). ISBN 978-5-534-07917-3. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/536805 (дата обращения: 02.05.2024).
- О-2. Гисин, В. Б. Дискретная математика: учебник и практикум для среднего профессионального образования / В. Б. Гисин. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 468 с. (Профессиональное образование). ISBN 978-5-534-16754-2. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/542794 (дата обращения: 02.05.2024).
- О-3. Шевелев, Ю. П. Дискретная математика: учебное пособие для спо / Ю. П. Шевелев. Санкт-Петербург: Лань, 2021. 592 с. ISBN 978-5-8114-7504-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/161638 (дата обращения: 02.05.2024). Режим доступа: для авториз. пользователей.

4.2 Дополнительные источники:

Д-1. Канцедал, С.А. Дискретная математика: учебное пособие. – М.: ИД «ФОРУМ»: ИНФРА-М, 2007 – 224 с. – (Профессиональное образование).

ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЕННЫХ В МЕТОДИЧЕСКИЕ УКАЗАНИЯ

№ изменения, дата внесения, № страницы с изменением						
Было	Стало					
Основание: Подпись лица, внесшего изменения						