ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ЧЕРЕМХОВСКИЙ ГОРНОТЕХНИЧЕСКИЙ КОЛЛЕДЖ ИМ. М.И. ШАДОВА»

Утверждаю: Директор ГБПОУ «ЧГТК им. М. И. Щадова» С.Н. Сычев «26» мая 2025 г.

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

ОУД.11Физика

общеобразовательного цикла

программы подготовки специалистов среднего звена

по специальности СПО

09.02.07 Информационные системы и программирование

Комплект контрольно-оценочных средств разработан в соответствии с рабочей программой учебной дисциплины **Физика**, с учетом требований ФГОС СОО и ФГОС СПО по специальности *09.02.07 Информационные системы и программирование*

Разработчик(и):

Солодовников В.В. - преподаватель ГБПОУ ИО «Черемховский горнотехнический колледж им. М.И. Щадова»

Одобрено на заседании цикловой комиссии: «Горных дисциплин» Протокол №6 от «04» февраля 2025 г. Председатель ЦК: Жук Н.А.

Одобрено Методическим советом колледжа Протокол №4 от «05» марта 2025 г. Председатель МС: Литвинцева Е.А.

СОДЕРЖАНИЕ	Стр
1.ПАСПОРТ КОМПЛЕКТА КОНТРОЛЬНО – ОЦЕНОЧНЫХ СРЕДСТВ	4
2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	5
3. ФОРМЫ И МЕТОДЫ ОЦЕНИВАНИЯ	6
4. КОНТРОЛЬНО – ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ВХОДНОГО КОНТРОЛЯ	6
5. КОНТРОЛЬНО – ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ	8
. КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ	
АТТЕСТАЦИИ	59
ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ К КОМПЛЕКТУ КОНТРОЛЬНО-	160

ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ К КОМПЛЕКТУ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ.

1. ПАСПОРТ КОНТРОЛЬНО- ОЦЕНОЧНЫХ СРЕДСТВ

Освоение содержания учебной дисциплины **Физика** обеспечивает достижение студентами **дисциплинарных** (предметных) результатов обучения, регламентированные ФГОС СОО с учетом ФГОС СПО по специальности *09.02.07*

Информационные системы и программирование

личностных:

- чувство гордости и уважения к истории и достижениям отечественной физической науки; физически грамотное поведение в профессиональной деятельности и в быту при обращении с физическими, материалами и процессами;
- готовность к продолжению образования и повышения квалификации в избранной профессиональной деятельности
- умение использовать достижения современной физической науки и физических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

метапредметных:

- использование различных видов познавательной деятельности и основных интеллектуальных операций (постановка задачи, формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов, формулирование выводов) для решения поставленной задачи, применение основных методов познания (наблюдение, научный эксперимент) для изучения различных сторон физических объектов и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере;
- использование различных источников для получения физической информации, умение оценить её достоверность для достижения хороших результатов в профессиональной сфере;

предметных:

- сформированность представлений о месте физики в современной научной картине мира; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
- владение основополагающими физическими понятиями, теориями, законами и закономерностями; уверенное пользование физической й терминологией и символикой;
- владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент; умение обрабатывать, объяснять результаты проведённых опытов и делать выводы; готовность и способность применять методы познания при решении практических задач;
- сформированность умения давать количественные оценки и проводить расчёты по физическим формулам и уравнениям;
- владение правилами техники безопасности при использовании оборудования;
- сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

В результате освоения учебной дисциплины Физика обучающиеся должны обладать

предусмотренными ФГОС СПО специальности 09.02.07 Информационные системы и

общими и профессиональными компетенциями:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- OK 02. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности
- ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях. Планировать и реализовывать собственное профессиональное и личностное развитие
- ОК 04. Эффективно взаимодействовать и работать в коллективе и команде
- OK 05. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста
- ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях

Учебным планом предусмотрена промежуточная аттестация по учебной дисциплине **Физика** в форме **экзамена**.

2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Комплексная проверка результатов освоения учебной дисциплины Физика и динамики формирования общих компетенций осуществляется посредством входного, текущего контроля и промежуточной аттестации.

Контроль и оценка результатов освоения учебной дисциплины

Коды общих (ОК) и	Виды деятельности	Формы, методы, средства контроля	
профессиональных (ПК)	обучающихся	Текущий	Промежуточная
компетенции		контроль ¹	аттестация
OK 03	Введение	.Тест,	Экзамен
ОК 04		практическое	
		занятие	
	Раздел 1. Механика		
OK 01		Тест,	Экзамен -
OK 02		практическое	
OK 03		занятие	
OK 04			
	Раздел 2.Молекулярная		
	физика и термодинамика		
OK 01		Тест,	Экзамен
OK 02		практическое	
OK 03		занятие	
OK 04			
	Раздел 3.		
	Электродинамика		
OK 01	-	Тест,	Экзамен

¹ Указываются виды текущего контроля: вводный контроль, контрольная работа, устный опрос, тестирование, практические (лабораторные) занятия и др.

5

20			
OK 02		практическое	
OK 03		занятие	
ОК 04			
	Раздел 4.		
	Колебания и волны		
OK 01		Тест,	Экзамен
OK 02		практическое	
OK 03		занятие	
OK 04		запитис	
OK 04			
	Раздел 5.		
	Оптика		
ОК 01		Тест,	Экзамен
ОК 02		практическое	
OK 03		занятие	
OK 04		запитис	
OK 04			
	Раздел 6. Квантовая		
	физика		
OK 01		Тест,	Экзамен
OK 02		практическое	
OK 03		занятие	
		занятис	
OK 04			
	Раздел 7. Строение		
	вселенной		
OK 01		Тест,	Экзамен
ОК 02		практическое	
OK 03		занятие	
		Samme	
OK 04			

3. ФОРМЫ И МЕТОДЫ ОЦЕНИВАНИЯ

Формы **текущего контроля** соответствуют рабочей программе дисциплины и планам (технологическим картам) учебных занятий по указанному разделу, теме. Одной из форм входного и текущего контроля, позволяющей выявить умения применять полученные знания на практике являются **практические занятия.** Также формами текущего контроля являются: тестирование, устный опрос, работа с текстом, выполнение упражнений и т.д.

Формой промежуточной аттестации является экзамен

4. КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ВХОДНОГО КОНТРОЛЯ

Система оценивания результатов входного контроля

entrema entingament professioned broaders to the point				
Количество	13-12	11-8	7-4	3-1
баллов				
оценка	5	4	3	2

Задания входного контроля

1)Радиус-вектор – это...:

- а)направленный отрезок
- б)напраленный отрезок от начала координат
- в)траектория

2)Скаляр – это...:

- а)положительная и отрицательная величина
- б)только положительная величина
- в)только отрицательная величина
- **3)Модуль это...:**
- а)отрицательное и положительное значение
- б)только положительное значение
- в)только отрицательное значение

4)Когда упадет капля с потолка?

- а)Никогда
- б)Когда сила притяжения станет больше, чем сила натяжения капли
- в)Когда обе силы будут равны
- 5)За 2 часа автомобиль проедет 120 км. Чему равна скорость?

6)Каким прибором измеряют силу?

- а)манометром
- б)спектрометром
- в)динамометром

7)Для осуществления в проводнике электрического тока необходимо наличие:

- а)свободных заряженных частиц
- б)электрического поля
- в)свободных заряженных частиц и электрического поля

8)Что такое Ом?

- а)единица сопротивления
- б)единица тока
- в)единица напряжения

9)Что такое скорость?

- а)перемещение
- б)быстрота
- в)быстрота перемещения

10)Разность потенциалов – это...:

- а)заряд
- б)энергия
- в)напряжение

11)Напряжение электрической сети равно 220 вольт. Ток 0,5 А.Найти сопротивление.

- 12) Камень бросили с обрыва. Рассчитать силу тяжести, если масса камня 200 гр.
- 13) Частота колебания напряжения в электрической сети равна 50 Гц. Определить период колебаний.

ответы:

1-Б	11-440Ом
2-A	12-2H
3-Б	13-0,02c
4 E	

4-Б

5-60км/ч

6-B

7-B

8-A

9-B

10-B

5. КОНТРОЛЬНО – ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ

Раздел 1. Механика

Тест 1

Система оценивания текущего контроля «5» -90-100 %, «4» - 70-89 %, «3» - 50-69 %, «2» - 49- ниже**Тема 1.1 Основы к**инематики

Вариант 1

- 1. Два лыжника, находясь друг от друга на расстоянии 140 м, движутся навстречу друг другу. Один из них, имея на- чальную скорость 5 м/с, поднимается в гору равнозамедлен- но с ускорением 0.1 м/с². Другой, имея начальную скорость 1 м/с, спускается с горы с ускорением 0.2 м/с².
- а) Через какое время скорости лыжников станут равными?
- **б)** С какой скоростью движется второй лыжник относи- тельно первого в этот момент времени?
- в) Определите время и место встречи лыжников.
- 2. С вертолета, летящего горизонтально на высоте 320 м со скоростью 50 м/с, сброшен груз.
- **а)** Сколько времени будет падать груз? (Сопротивлением воздуха пренебречь.)
- 6) Какое расстояние пролетит груз по горизонтали за время падения?
- в) С какой скоростью груз упадет на землю?
- 3. На станке сверлят отверстие диаметром 20 мм при ско- рости внешних точек сверла 0,4 м/с.
- **а)** Определите центростремительное ускорение внешних точек сверла и укажите направления векторов мгновенной скорости и центростремительного ускорения.
- б) Определите угловую скорость вращения сверла.
- в) Сколько времени потребуется, чтобы просверлить от- верстие глубиной 150 мм при подаче 0,5 мм на один оборот сверла?

- 1. Два автомобиля вышли со стоянки одновременно с уско- рениями $0.8 \text{ и } 0.6 \text{ м/c}^2 \text{ в противоположных направлениях.}$
- **а)** Чему равны скорости автомобилей через 20 с после начала движения?
- **б)** С какой скоростью движется первый автомобиль отно- сительно второго в этот момент времени?
- **в)** Через какое время после выхода со стоянки первый автомобиль пройдет расстояние, на 250 м большее, чем второй?
- 2. Из пушки произведен выстрел под углом 45° к горизонту. Начальная скорость снаряда 400 м/c.
- **а)** Через какое время снаряд будет находиться в наивыс- шей точке полета? (Сопротивлением воздуха пренебречь.)
- **б)** На какую максимальную высоту поднимется снаряд при полете? Чему равна дальность полета снаряда?

- в) Как изменится дальность полета снаряда, если вы- стрел произвести под углом 60° к горизонту?
- 3. Лебедка, радиус барабана которой 8 см, поднимает груз со скоростью 40 см/с.
- **а)** Определите центростремительное ускорение внешних точек барабана и укажите направления векторов мгновенной скорости и центростремительного ускорения.
- б) С какой угловой скоростью вращается барабан?
- **в)** Сколько оборотов сделает барабан лебедки при подъ- еме груза на высоту 16

Тема 1.2 Основы динамики

Тест 2 Вариант 1

- 1. На рисунке показаны силы, действующие на
- 2. материальную точку. Определите модуль
- 3. равнодействующей силы (в заданном масштабе).
- 4. (Ответ дайте в ньютонах и округлите до десятых.)
 - 2. На левом рисунке представлены векторы скорости и ускорения тела. Какой из четырёх векторов на правом рисунке указывает

направление вектора равнодействующей всех сил, действующих н

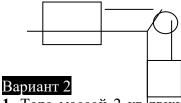
- **3**. Под действием силы 3 H пружина удлинилась на 4 см, а под действием силы 6 H- на 8 см. Чему равен модуль силы, под действием которой удлинение пружины составило 6 см?
- 4. Автомобиль выполняет поворот, двигаясь по скольской дороге с постоянной скоростью $20\frac{\text{M}}{\text{c}}$. Минимально возможный радиус поворота в этих условиях 90 м. Чему равен коэффициент трения

поворота в этих условиях 90 м. Чему равен коэффициент трения колёс о дорогу?

5. Космический корабль движется по круговой орбите вокруг Земли. На высоте 250 км от поверхности земли первая космическая скорость корабля равна 7,9 км/с. В результате перехода с одной круговой орбиты на другую (на высоту 250 км) первая космическая скорость стала равной 7,74 км/с.

Как изменяются в результате этого перехода центростремительное (нормальное) ускорение корабля и период обращения вокруг Земли?

Для каждой величины определите соответствующий характер её изменения:


1) увеличилась; 2) уменьшилась; 3) не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

вели ины. цифры в ответ	е могут повториться:
Центростремительное	Период обращения вокруг Земли
(нормальное) ускорение	

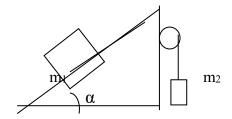
6. Тело массой m=1 кг висит на нити. Переброшенной через блок (см. рис.) и привязанной к телу M=2 кг, которое лежит на горизонтальной поверхности стола. Найдите модули ускорения тел, если коэффициент трения между телом на столе и поверхностью стола равен 0,4.

- **1.** Тело массой 2 кг движется вдоль оси Ох. На рисунке представлен график зависимости проекции скорости v_x этого тела от времени t. Чему равен модуль проекции силы F_x , действующей на это тело в течение первой секунды? (Ответ дайте в ньютонах.)
- **2.**Единицу рамерности силы H в системе СИ можно выразить через основные единицы системы следующим образом:

1)
$$\kappa \mathbf{r} \cdot \mathbf{m}^1 \cdot \mathbf{c}^2$$
; 2) $\kappa \mathbf{r} \cdot \mathbf{m} \cdot \mathbf{c}$; 3) $\frac{\kappa \mathbf{r} \cdot \mathbf{m}}{\mathbf{c}^2}$; 4) $\frac{\kappa \mathbf{r} \cdot \mathbf{c}^2}{\mathbf{m}}$

3. На полу лифта, разгоняющегося вверх с постоянным ускорением $a=1~{\rm M/c^2},$ лежит груз массой 5 кг. Каков вес этого груза? Ответ выразите в ньютонах.

- 4.С какой наибольшей скоростью может двигаться автомобиль по горизонтальной дороге на повороте с радиусом закругления 100 м, чтобы его не занесло, если коэффициент трения равен 0,4?
- **5.** Брусок скользит вниз по наклонной плоскости без трения. Что происходит при этом с его скоростью, силой реакции наклонной плоскости?


Для каждой величины определите соответствующий характер её изменения:

1) увеличилась; 2) уменьшилась; 3) не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Скорость	Сила	реакции	наклонной
	плоскости		

6.Тело массой m_1 =1,2 кг движется вверх по наклонной плоскости под действием связанного с ним невесомой нерастяжимой нитью груза массой m_2 =2 кг, как показано на рисунке. Коэффициент трения тела о плоскость 0,1. Угол наклона плоскости 30^0 . Определите ускорение, с которым движется тело, и силу натяжения нити. Блок невесом и вращается без трения.

Тема 1.3 Законы сохранения Тест 3

Вариант 1

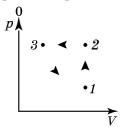
- 1. Пуля массой 10 г, летящая горизонтально со скоростью 347 м/с, попадает в свободно подвешенный на нити неболь- шой ящик с песком массой 2 кг и застревает в нем.
- а) Определите скорость ящика в момент попадания в него пули.
- **б)** Какую энергию приобрела система ящик с песком пуля после взаимодействия пули с ящиком?
- **в)** На какой максимальный угол от первоначального по- ложения отклонится нить, на которой подвешен ящик, после попадания в него пули? Длина нити 1 м.
- 2. Подъемный кран равномерно поднимает груз массой 2 т на высоту 15 м.
- а) Какую работу против силы тяжести совершает кран?
- **б)** Чему равен КПД крана, если время подъема груза 1 мин, а мощность электродвигателя 6,25 кВт?
- **в)** При какой мощности электродвигателя крана возмо- жен равноускоренный подъем того же груза из состояния по- коя на высоту 20 м за то же время?(КПД крана считать неиз- менным.)
- 3. Труба массой 2,1 т и длиной 16 м лежит на двух опорах, расположенных на расстояниях 4 и 2 м от ее концов.
- **а)** Изобразите силы, действующие на трубу, определите плечи этих сил относительно точки касания трубы с правой опорой и запишите условия равновесия трубы.
- б) Чему равна сила давления трубы на левую опору?
- **в)** Какую силу необходимо приложить к правому концу трубы, чтобы приподнять его?

- 1. Пуля массой 10 г, летящая гори- зонтально со скоростью 500 м/с, попадает в ящик с песком массой 2,49 кі \vec{v}_1 тальной поверхности, и застревает в нем.
- а) Чему равна скорость ящика в момент п
- б) Ящик скреплен пружиной с вертикальной стенкой.
- Чему равна жесткость пружины, если она сжалась на 5 см по- сле попадания в ящик пули? (Трением между ящиком и по- верхностью пренебречь.)
- **в)** На сколько сжалась бы пружина, если бы коэффици- ент трения между ящиком и поверхностью был равен 0,3?
- 2. Мощность двигателя подъемного крана 4,4 кВт.

- **а)** Определите полезную работу, которую совершает двигатель крана за 0,5 мин, если КПД крана 80%.
- **б)** Определите массу груза, который можно равномерно поднять на высоту 12 м за это же время.
- **в)** При каком КПД крана возможен равноускоренный подъем груза массой 1 т из состояния покоя на ту же высоту за то же время? (Мощность двигателя крана считать неиз- менной.)
- 3. К балке массой 200 кг и длиной 5 м подвешен груз мас- сой 250 кг на расстоянии 3 м от левого конца. Балка своими концами лежит на опорах.
- **а)** Изобразите силы, действующие на балку, определите плечи этих сил относительно точки касания балки с левой опорой и запишите условия равновесия балки.
- б) Определите силу реакции правой опоры.
- **в)** Какую силу необходимо приложить к левому концу балки, чтобы приподнять его?

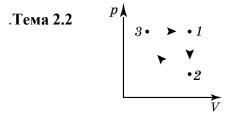
Раздел 2 Молекулярная физика и термодинамика

Тема 2.1


Основы молекулярно

- кинетической теории

Тест 4


- 1. В опыте Штерна для определения скорости движения атомов используется платиновая проволока, покрытая се- ребром. При нагревании проволоки электрическим током се- ребро испаряется.
- а) Определите массу атома серебра.
- **б)** Почему в опыте Штерна на поверхности внешнего вра- щающегося цилиндра атомы серебра оседают слоем неоди- наковой толщины?
- в) Определите скорость большей части атомов серебра, если при частоте вращения цилиндров 50 об/с смещение по- лоски составило 6 мм. Радиус внешнего цилиндра 10,5 см, внутреннего цилиндра 1 см.
- 2. В тонкостенном резиновом шаре содержится воздух мас- сой 5 г при температуре 27 °C и атмосферном давлении 10^5 Па.
- а) Определите объем шара. (Молярную массу воздуха принять равной $29 \cdot 10^{-3}$ кг/моль.)
- **б)** При погружении шара в воду, температура которой 7 °C, его объем уменьшился на 2,3 л. Определите давление воздуха в шаре. (Упругостью резины пренебречь.)

- в) Сколько молекул газа ударится о единицу внутренней поверхности шара (1 м^2) за 1 с в этом случае? 3. С идеальным газом был произведен процесс, изображенный на
- рисунке. Мас- са газа постоянна.
- Назовите процессы, происходящие с идеальным газом.
- **б)** Изобразите графически эти про- цессы в координатах p, T.

в) Изобразите графически зависимость плотности иде- ального газа от температуры для этих процессов.

- 1. Перрен наблюдал беспорядочное движение взвешенных частиц гуммигута в жидкости.
- **а)** Чем обусловлено движение частиц гуммигута и почему заметнее движение мелких частиц?
- **б)** Сколько молекул содержится в броуновской частице в опыте Перрена, если масса частицы $8,5 \cdot 10^{-15}$ г, а относи- тельная молекулярная масса гуммигута 320?
- **в)** Во сколько раз различаются средние квадратичные скорости частиц гуммигута и молекул воды, в которой они взвешены?
- 2. Сосуд объемом 20 л наполнили азотом, масса которого 45 г, при температуре 27 °C.
- а) Определите давление газа в сосуде.
- **б)** Каким будет давление, если в этот сосуд добавить ки- слород массой 32 г? Температуры газов одинаковы и посто- янны.
- **в)** Какую часть смеси необходимо выпустить из сосуда, чтобы давление в нем уменьшилось до атмосферного? Тем- пература при этом понижается на 10 К.
- 3. С идеальным газом был произведен процесс, изображенный на рисунке. Мас- са газа постоянна.
- а) Назовите процессы, происходящие с идеальным газом.
- **б)** Изобразите графически эти про- цессы в координатах V, T.
- **в)** Изобразите графически зависи- 0 мость плотности идеального газа от температуры для этих процессов.

Термодинамика

Тест 5

- 1. Газ, содержащийся в сосуде под поршнем, расширился изобарно при давлении $2 \cdot 10^5$ Па от объема $V_1 = 15$ л до объ- ема $V_2 = 25$ л.
- **а)** Определите работу, которую совершил газ при расширении. Изобразите этот процесс графически в координатах $p,\ V$ и дайте геометрическое истолкование совершенной работе.

- б) Какое количество теплоты было сообщено газу, если его внутренняя энергия при расширении увеличилась на 1 кДж?
- в) На сколько изменилась температура газа, если его масса 30 г?
- В алюминиевой кастрюле массой 0,3 кг находится вода массой 0,5 кг и лед массой 90 г при температуре 0°C.
- а) Какое количество теплоты потребуется, чтобы довести содержимое кастрюли до кипения?
- б) Какое количество теплоты поступало к кастрюле в единицу времени и какая часть тепла не использовалась, если нагревание длилось 10 мин? Мощность нагревателя 800 Вт.
- в) Какая часть воды выкипит, если нагревание проводить в 2 раза дольше?
- Тепловая машина, работающая по циклу Карно, за один цикл 3. совершает работу, равную 2,5 кДж, и отдает холодиль- нику количество теплоты, равное 2,5 кДж.
- а) Определите КПД тепловой машины.
- б) Чему равна температура нагревателя, если температу- ра холодильника
- в) Какое топливо использовалось в тепловой машине, если за один цикл сгорало 0,12 г топлива?

Вариант 2

- Газ переходит состоя- ния 1 в состояние 3 через ИЗ $p, 10^{9} \Pi a$ промежуточное состояние 2.
- а) Определите работу, ко-торую совершает газ
- а) определите расоту, ко-торую совершает та-2 3 3 3 3 6. Как изменилась внут- ренняя энергия ваза, если>ему было сообщено количест- во теплоты, равное 8кДж?
- в) На сколько и как изменилась температура одновтом- ного газа, взятого в количестве 0,8 моль?
- В холодильнике из воды, температура которой $2\sqrt[6]{0}$, 10^{-2} лучили лед массой 200 г при температуре −5 °C.
- а) Какое количество теплоты было отдано водой и льдом?
- б) Сколько времени затрачено на получение льда, если мощность количество теплоты, выделившейся холодильника 60 Bt, a при получении льда составляет
- 10% от количества энергии, потребленной холодильником?
- **в)** Какое количество теплоты Q' было отдано холодильни- ком воздуху в комнате за это же время?

Теплоёмкостью холодильника пренебречь.

- 3. Температура нагревателя идеальной тепловой машины 227 °C, а температура холодильника 47 °C.
- а) Чему равен КПД тепловой машины?
 - **б)** Определите работу, совершаемую тепловой машиной за один цикл, если холодильнику сообщается количество теплоты, равное 1,5 кДж.
 - **в)** Определите массу условного топлива, которое необходимо сжечь для совершения такой же работы.

Тест 6

Тема 2.3 Агрегатные состояния вещества и фазовые переходы

- 1. В комнате объемом 50 м 3 при температуре 20 °C относи- тельная влажность воздуха равна 40%.
- **а)** Определите давление водяного пара, содержащегося в воздухе **б)** Чему равна масса водяного пара в комнате?
- **в)** Сколько воды должно еще испариться, чтобы относи- тельная влажность увеличилась в 1,5 раза?
- 2. Шар, изготовленный из монокристалла, при нагревании может изменить не только свой объем, но и форму.
- а) Объясните, почему это может произойти.
- **б)** Существуют ли в природе монокристаллышарообраз- ной формы? Ответ обоснуйте.
- **в)** Возможно ли при нагревании изменение формы шара, изготовленного из стали? Ответ обоснуйте.

Вариант 2

- 1.В подвале при температуре 7 °C относительная влаж- ность воздуха равна 100%.a) Определите давление водяного пара, содержащегося в воздухе
- **б)** Чему равна масса воды, содержащейся в каждом ку- бическом метре воздуха?
- в) Сколько воды выделится в виде росы при понижении температуры воздуха на 2 °C? Объем

подвала 20 м^3 .

- 2. Разбили кусочек стекла и крупный кусок поваренной соли. Осколки стекла в отличие от поваренной соли оказа- лись неправильной формы.
 - а) Почему наблюдается такое различие?
- **б)** Почему в таблице температур плавления различных веществ нет температуры плавления стекла?
 - **в)** С каким из этих веществ по своим свойствам сходна медь? Почему?

Вариант 1

Раздел 3 Электродинамика

Тема 3.1 Электрическое поле

Тест 7

- 1. Два точечных заряда $q_1 = 20$ нКл и $q_2 = 50$ нКл расположены на расстоянии 10
- 2. друг от друга в вакууме.
 - а) С какой силой взаимодействуют эти заряды?
- **б)** На каком расстоянии от заряда q_1 расположена точка, в которую помещается заряд q3, находящийся при этом равновесии?
- в) Чему равны напряженность и потенциал электрическо- го поля, созданного зарядами q_1 и q_2 в этой точке?
- 3. Однородное электрическое поле создано двумя параллельными противоположно заряженными пластинами, находящимися друг от друга на расстоянии 20 мм. Напряжен- ность электрического поля равна 3 кВ/м.
- а) Чему равна разность потенциалов между пластинами? б) Какую скорость в направлении силовых линий поля приобретет первоначально покоящийся протон, пролетев про- странство между пластинами? Заряд протона $1.6 \cdot 10^{-19}$ Кл.

его масса $1,67 \cdot 10^{-27}$ кг.

в) Во сколько раз меньшую скорость приобрела бы αчастица, заряд которой в 2 раза больше заряда протона, а масса в 4 раза больше массы протона?

- 4. Плоский воздушный конденсатор емкостью 0,5 мкФ подключили к источнику постоянного напряжения 100 В.
 - а) Какой заряд накопит конденсатор при зарядке?
 - б) Чему равна энергия заряженного конденсатора?
- в) После отключения конденсатора от источника напряжения расстояние между его пластинами увеличили в 2 раза. Веществом с какой диэлектрической проницаемостью необходимо заполнить пространство между пластинами, чтобы энергия заряженного конденсатора осталась неизменной?

 $q_1 \bigcirc$

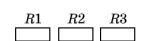
c

- 1. В двух вершинах треугольника со сторонами a=4 см, b=3 см и c=5 см находятся заряды $q_1=8$ нКл и $q_2=-6$ нКл.
- а) C какой силой взаимодействуют эти заряды?
- **б)** Определите напряженность электрического поля в третьей вершине треугольника. b
- **в)** Определите потенциал электростатического поля в третьей вершине треугольника.
- 2. Пылинка с зарядом 3,2 нКл неподвижно висит в однородном электрическом поле.
- а) Сколько электронов необходимо поместить на пылин- ку для ее нейтрализации? (Модуль заряда электрона принять равным $1,6\cdot 10^{-19}$ Кл.)
- **б)** Чему равна масса пылинки, если напряженность электрического поля равна 40 кН/Кл?
- **в)** С каким ускорением двигалась бы пылинка, если бы напряженность электрического поля была в 2 раза больше?
- 3. При подключении плоского воздушного конденсатора к источнику постоянного напряжения 120 В на конденсаторе может быть накоплен заряд 0,36 мкКл.
 - а) Определите емкость конденсатора.
 - б) Чему равна энергия заряженного конденсатора?

в) Как нужно изменить расстояние между пластинами конденсатора, чтобы, не отключая его от источника напряжения, увеличить накопленную конденсатором энергию в 2 раза?

Тест 8

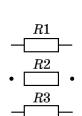
Вариант 1


Тема 3.2

Законы постоянноготока

- 1. Медный проводник имеет длину 500 м и площадь поперечного сечения $0.5~{\rm mm}^2$.
- а) Чему равна сила тока в проводнике при напряжении на его концах 12 В? Удельное сопротивление меди $1.7 \cdot 10^{-8}$ Ом \cdot м.
- **б)** Определите скорость упорядоченного движения электронов. Концентрацию свободных электронов для меди при-

мите равной $8.5 \cdot 10^{28} \text{ м}^{-3}$, а модуль заряда электрона равным $1.6 \cdot 10^{-19} \text{ Кл}$.


- в) К первому проводнику последовательно подсоединили второй медный проводник вдвое большего диаметра. Какой будет скорость упорядоченного движения электронов во втором проводнике? ℓ
- 2. К источнику тока, ЭДС которого равна 6 В, подключены резисторы, сопротивления которых $R_1 = 1$ Ом, $R_2 = R_3 = 2$ Ом. Сила тока в цепи равна 1 А.

- **а)** Определите внутреннее сопротивление источника тока.
- **б)** Какой станет сила тока в резисторе R1, если к рези-стору R3 параллельно подключить такой же резистор R4?
 - **в)** Определите потерю мощности в источ нике тока в случае δ .
- 3. Электродвигатель подъемного крана работает под напряжением 380 В, сила тока в его обмотке равна 20 А.
- **а)** Какую работу совершает электрический ток в обмотке электродвигателя за 40 с?

б) На какую высоту за это время кран может поднять бетонный шар массой 1 т, если КПД установки 60%? **в)** Как изменятся энергетические затраты на подъем груза, 19 его будут поднимать из реки в воде? Плотность воды $1 \cdot 10^3$ кг/м³, плотность бетона 2,5 \cdot 10^3 кг/м³. (Сопротивлением жидкости при движении груза пренебречь.)

- 1. Стальной проводник диаметром 1 мм имеет длину 100 м.
- а) Определите сопротивление стального проводника, если удельное сопротивление стали $12 \cdot 10^{-8}$ Ом · м.
- **б)** Какое напряжение нужно приложить к концам этого проводника, чтобы через его поперечное сечение за 0,3 с прошел заряд 1 Кл?
 - в) При какой длине проводника и этом напряжении на его концах (см. пункт б) скорость упорядоченного движения электронов будет равна 0,5 мм/с? Концентрация электронов проводимости в стали 10^{28} м $^{-3}$. Модуль заряда электрона примите равным 1,6 \cdot 10^{-19} Кл.
 - 2. К источнику тока, ЭДС которого равна 6 В, подключены три одинаковых резистора сопротивлением 12 Ом каждый. Сила тока в неразветвленной части цепи равна 1,2 А.
 - **a)** Определите внутреннее сопротивление источника тока.
 - **6)** К этим трем резисторам последовательно подключили резистор сопротивлением R4 = 1 Ом. Чему равна сила тока в резисторе R4?
 - **в)** Чему равна мощность, которую выделяет источник тока во внешней цепи в случае **6**?
 - 3. Электрочайник со спиралью нагревательного элемента сопротивлением 30 Ом включен в сеть напряжением 220 В.

- **а)** Какое количество теплоты выделится в нагреватель- ном элементе за 4 мин?
- **6)** Определите КПД электрочайника, если в нем можно вскипятить за это же время 1 кг воды, начальная темпе- ратура которой 20 °C. Удельная теплоемкость воды 4,19 кДж/кг · К.
- в) Какая часть воды могла бы выкипеть за это же время работы электрочайника, если бы сопротивление спирали нагревательного элемента было равно 25 Ом? Удельная тепло- та парообразования воды 2,3 МДж/кг.

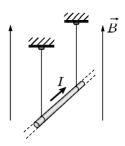
Тема 3.3 Электрический ток вразличных средах Тест 9

- 1. При пропускании тока от источника постоянного напряжения через стальной проводник проводник нагревается.
 - а) Как изменяется сопротивление проводника и почему? 21
- **б**) При какой температуре сопротивление проводника становится больше на 20% по сравнению с сопротивлением при температуре 0 °C? Температурный коэффициент сопро- тивления для стали $0,006~{
 m K}^{-1}$.
 - **в)** На сколько процентов в этом случае изменяется мощность, выделяемая в проводнике?

- 2. При обычных условиях газы почти полностью состоят из нейтральных атомов и молекул и являются диэлектриками.
- **а)** Подвлиянием каких факторов газ может стать проводником электричества?
- **б)** В газоразрядной трубке площадь каждого электрода 1 дм^2 , а расстояние между электродами 5 мм. Ионизатор каждую секунду образует в объеме 1 см^3 газа $12,5 \cdot 10^6$ положительных ионов и столько же электронов. Определите силу тока насыщения, который установится в этом случае. Модуль заряда электрона $e = 1,6 \cdot 10^{-19} \text{ Kn}$.
- в) При каком значении напряжения между электродами в трубке может начаться самостоятельный газовый разряд, если длина свободного пробега электрона 0.05 мм, а энер- гия ионизации молекул газа $2.4 \cdot 10^{-18}$ Дж?
- 3. В электролитической ванне хромирование детали проводилось при силе тока 5 А в течение 1 ч.
- **а)** Определите массу хрома, который осел на детали. Электрохимический эквивалент хрома 0,18 мг/Кл.
- **б)** Чему равна площадь поверхности детали, если тол- щина покрытия составила 0,05 мм? Плотность хрома $7.2 \cdot 10^3$ кг/м 3 .
- **в)** Сколько атомов хрома осело на каждом квадратном сантиметре поверхности детали? Молярная масса хрома 52 г/моль.

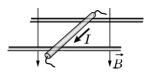
- 1. Температура полупроводникового термистора увеличилась.
 - а) Как изменилось сопротивление термистора и почему?
- **б)** Термистор включен в цепь постоянного тока последовательно с резистором сопротивлением 400 Ом. Напряжение в цепи 12 В. При комнатной температуре сила тока в цепи 3 мА. Чему равно сопротивление термистора?
 - в) При нагревании термистора сила тока в цепи увеличи-

лась до 9 мА. Во сколько раз при этом изменилось сопротивление термистора?


- 2. Электрический ток в вакууме представляет собой поток электронов.
 - а) Как получить поток электронов в вакууме?
- **б)** В электронно-лучевой трубке поток электронов ускоряется электрическим полем между катодом и анодом с разностью потенциалов 2 кВ. Определите скорость электронов при достижении ими анода. Модуль заряда электрона $1,6 \cdot 10^{-19}$ Кл, масса электрона $9,1 \cdot 10^{-31}$ кг.
- в) Пройдя отверстие в аноде, электроны попадают в пространство между двумя вертикально отклоняющими пластинами длиной 3 см каждая, напряженность электрического поля между которыми 300 В/см. Определите вертикальное смещение электронов на выходе из пространства между пла- стинами.
- 3. Серебрение детали продолжалось 0,5 ч при силе тока в электролитической ванне 2 А.
- **а)** Чему равна масса серебра, которое осело на детали? Электрохимический эквивалент серебра 1,12 мг/Кл.
- **б)** Чему равна толщина покрытия, если площадь поверх- ности детали 100 см^2 ? Плотность серебра $10.2 \cdot 10^3 \text{ кг/м}^3$.
- **в)** При каком напряжении проводилось серебрение детали, если было затрачено 0,025 кВт · ч электрической энергии, а КПД установки 80%?

Тема 3.4 Магнитное поле

Тест 10


- 1. В воздушных проводах, питающих двигатель троллейбу- са, ток идет в противоположных направлениях.
 - а) Как взаимодействуют воздушные провода?
- **б)** Опишите механизм взаимодействия воздушных проводов. Ответ поясните рисунком.

- **в)** Оказывает ли влияние на взаимодействие проводов электрическое взаимодействие зарядов?
- 2. Проводник длиной 15 см подвешен горизонтально на двух невесомых нитях в магнитном поле индукцией 60 мТл, при- чем линии индукции направлены вверх перпендикулярно проводнику.
- а) По проводнику пропустили ток. Сила тока 2 А. С какой силой магнитное поле действует на проводник? На рисунке укажите направление этой силы.

- **б)** На какой угол от вертикали отклонятся нити, на кото- рых висит проводник? Масса проводника 10 г. 42
 - в) Чему равна сила натяжения каждой нити?
- 3. Протон влетает в магнитное поле индукцией 20 мТл со скоростью $10~{\rm km/c}$ под углом 30° к линиям магнитной индукции.
- **а)** С какой силой магнитное поле действует на протон? Заряд протона $e=1,6\cdot 10^{-19}$ Кл.
- **б)** За какое время протон совершит один полный оборот вокруг линий магнитной индукции? Масса протона $1,67 \cdot 10^{-27} \, \mathrm{kr}$.
- **в)** На какое расстояние сместится протон вдоль линий магнитной индукции за 10 полных оборотов?

- 1. В двух параллельных проводниках ток проходит в одном направлении.
 - а) Как взаимодействуют эти проводники?
- **б)** Опишите механизм взаимодействия проводников. Ответ поясните рисунком.
- **в)** Чем обусловлено отталкивание двух параллельных электронных пучков?
- 2. На двух горизонтальных рельсах, расстояние между которыми 50 см, лежит металлический стержень, сила тока в котором 5 А. Рельсы и стержень находятся в однородном магнитном поле индукцией 50 мТл, направленном перпендикулярно рельсам и стержню.

- **а)** С какой силой магнитное поле действует на стержень? На рисунке укажите направление этой силы.
- **б)** При каком значении коэффициента трения стержня о рельсы он будет двигаться прямолинейно и равномерно? Масса стержня 125 г.
- **в)** С каким ускорением будет двигаться стержень, если силу тока в нем увеличить в 2 раза?
- 3. Электрон влетает в магнитное поле индукцией 10 мТл перпендикулярно линиям магнитной индукции со скоростью 1 Мм/с.
- **а)** Чему равен радиус кривизны траектории, по кото- рой движется электрон? Модуль заряда электрона e =
- $= 1.6 \cdot 10^{-19}$ Кл, его масса $m = 9.1 \cdot 10^{-31}$ кг.
 - б) С какой частотой обращается электрон?
- **в)** Как изменится частота обращения электрона при увеличении магнитной индукции в 2 раза?

Тема 3.5 Электромагнитная индукция

Тест 11

Вариант 1

1. В катушке с площадью поперечного сечения $5~{\rm cm}^2$ индукция однородного магнитного поля равномерно уменьшается от 200 до 50 мТл за $5~{\rm mc}$. Линии магнитной индукции параллельны оси катушки.

- а) Определите изменение магнитного потока в катушке.
 - **б)** Чему равна ЭДС индукции, возникшей в катушке, если в ней 500 витков?
 - в) Чему равна сила индукционного тока, возникшего в катушке? Катушка изготовлена из медного провода с площа- дью поперечного сечения $0.25~{\rm mm}^2$. Удельное сопротивление меди $1.7\cdot 10^{-8}~{\rm Om}\cdot {\rm m}$.
 - 2. В соленоиде при изменении в нем силы тока от 2 до 1 А за 2 с возникла ЭДС самоиндукции 0,05 В.
 - а) Определите индуктивность соленоида.
 - **б)** На сколько и как изменилась (увеличилась или уменьшилась) энергия магнитного поля соленоида за это время?
 - в) Определите сопротивление соленоида.
 - 3. Проводник длиной 2 м движется без трения под углом 30° к вектору индукции однородного магнитного поля со ско- ростью 4 м/с, опираясь своими концами на два параллель- ных металлических стержня. На концах проводника возника- ет разность потенциалов 40 мВ.
 - а) Чему равна индукция магнитного поля?
 - **б)** Определите силу тока, который будет идти через амперметр, присоединенный к стержням, если проводник перемещать в этом магнитном поле перпендикулярно линиям индукции с той же скоростью? Сопротивление амперметра 10 Ом. (Сопротивлением стержней и соединительных проводов пренебречь.)
 - **в)** Какой зарядпройдет через амперметр при перемещении проводника на расстояние 1 м?

- 1. В катушке, содержащей 300 витков проволоки, в течение 6 мс происходит равномерное изменение магнитного потока.
- а) На сколько и как изменился (увеличился или уменьшился) магнитный поток, пронизывающий катушку, если в ней возникла ЭДС индукции, равная 2 В?

- **б)** Определите начальное значение индукции магнитного поля, если ее конечное значение $10 \, \mathrm{мTл}$. Площадь поперечного сечения катушки $4 \, \mathrm{cm}^2$. Линии магнитной индукции перпендикулярны плоскости катушки.
- **в)** При каком начальном значении индукции магнитного поля возникающая в катушке ЭДС могла быть в 2 раза меньше?

- 2. В контуре, индуктивность которого 0,5 Гн, при изменении силы тока в течение 0,4 с возникла ЭДС самоиндукции 5 В.
 - а) На сколько изменилась сила тока в контуре?
- **б)** Во сколько раз за это время изменилась энергия магнитного поля контура? Начальное значение силы тока равно 5 A.
- **в)** Определите количество теплоты, которое выделилось в контуре за это время.
- 3. Стальной проводник с длиной активной части 1,4 м перемещается по двум параллельным проводящим направляющим в однородном магнитном поле под углом 45° к вектору магнитной индукции. В проводнике возбуждается ЭДС индукции 0,5 В. Индукция магнитного поля 0,2 Тл.
 - а) Чему равна скорость перемещения проводника?
- **б)** Какой станет ЭДС индукции, если этот проводник перемещать перпендикулярно линиям индукции с вдвое боль- шей скоростью?
- в) Определите заряд, который будет проходить через поперечное сечение проводника в каждую секунду, если направляющие замкнуть накоротко. Площадь поперечного сечения проводника 5 мм 2 . Удельное сопротивление стали $12 \cdot 10^{-8}$ Ом · м. (Сопротивлением направляющих пренебречь.)

Раздел 4. Колебания и волны

Тема 4.1 Механические колебания и волны

Тест 12

Вариант 1

- 4. При пропускании тока от источника постоянного напряжения через стальной проводник проводник нагревается.
 - а) Как изменяется сопротивление проводника и почему? 21
- **б)** При какой температуре сопротивление проводника становится больше на 20% по сравнению с сопротивлением при температуре 0 °C? Температурный коэффициент сопро-тивления для стали 0,006 K⁻¹.
 - **в)** На сколько процентов в этом случае изменяется мощность, выделяемая в проводнике?

5. При обычных условиях газы почти полностью состоят из нейтральных атомов и молекул и являются диэлектриками.

22

а) Подвлиянием каких факторов газ может стать проводником электричества?

- **б)** В газоразрядной трубке площадь каждого электрода 1 дм^2 , а расстояние между электродами 5 мм. Ионизатор каждую секунду образует в объеме 1 см^3 газа $12.5 \cdot 10^6$ положительных ионов и столько же электронов. Определите силу тока насыщения, который установится в этом случае. Модуль заряда электрона $e = 1.6 \cdot 10^{-19} \text{ Kn}$.
- в) При каком значении напряжения между электродами в трубке может начаться самостоятельный газовый разряд, если длина свободного пробега электрона 0.05 мм, а энер- гия ионизации молекул газа $2.4 \cdot 10^{-18}$ Дж?
- 6. В электролитической ванне хромирование детали проводилось при силе тока 5 А в течение 1 ч.
- а) Определите массу хрома, который осел на детали.
 Электрохимический эквивалент хрома 0,18 мг/Кл.
- **б)** Чему равна площадь поверхности детали, если тол- щина покрытия составила 0.05 мм? Плотность хрома $7.2 \cdot 10^3$ кг/м 3 .
- **в)** Сколько атомов хрома осело на каждом квадратном сантиметре поверхности детали? Молярная масса хрома 52 г/моль.

- 4. Температура полупроводникового термистора увеличилась.
 - а) Как изменилось сопротивление термистора и почему?
- **б)** Термистор включен в цепь постоянного тока последовательно с резистором сопротивлением 400 Ом. Напряжение в цепи 12 В. При комнатной температуре сила тока в цепи 3 мА. Чему равно сопротивление термистора?
- **в)** При нагревании термистора сила тока в цепи увеличилась до 9 мА. Во сколько раз при этом изменилось сопротивление термистора?

- 5. Электрический ток в вакууме представляет собой поток электронов.
 - а) Как получить поток электронов в вакууме?
- **б)** В электронно-лучевой трубке поток электронов ускоряется электрическим полем между катодом и анодом с разностью потенциалов 2 кВ. Определите скорость электронов при достижении ими анода. Модуль заряда электрона $1,6 \cdot 10^{-19}$ Кл, масса электрона $9,1 \cdot 10^{-31}$ кг.
- в) Пройдя отверстие в аноде, электроны попадают в пространство между двумя вертикально отклоняющими пластинами длиной 3 см каждая, напряженность электрического поля между которыми 300 В/см. Определите вертикальное смещение электронов на выходе из пространства между пла- стинами.
- 6. Серебрение детали продолжалось 0,5 ч при силе тока в электролитической ванне 2 А.
- **а)** Чему равна масса серебра, которое осело на детали? Электрохимический эквивалент серебра 1,12 мг/Кл.
- **б)** Чему равна толщина покрытия, если площадь поверх- ности детали 100 см^2 ? Плотность серебра $10.2 \cdot 10^3 \text{ кг/м}^3$.
- **в)** При каком напряжении проводилось серебрение детали, если было затрачено 0,025 кВт · ч электрической энергии, а КПД установки 80%?

Тест 13

Вариант 1

- 1. Колебательный контур радиоприемника состоит из конденсатора емкостью $1000~\text{n}\Phi$ и катушки индуктивностью $50~\text{мк}\Gamma\text{h}$.
 - а) Чему равен период собственных колебаний в контуре?
- **б)** На какую длину волны настроен данный радиоприемник?
- **в)** На сколько и как необходимо изменить емкость конденсатора для настройки радиоприемника на длину волны 300 м?
- 2. В сеть переменного тока напряжением 220 В включена катушка индуктивностью 50 м Γ н.
- **а)** Чему равна частота переменного тока, если сила тока в цепи 1,75 A? (Активным сопротивлением катушки пренебречь.)
- **б)** Определите емкость конденсатора, который нужно включить в данную цепь, чтобы в цепи наступил резонанс.
 - **в)** Определите резонансную частоту в цепи, если последовательно с имеющимся конденсатором включить такой же конденсатор.
 - 3. Первичная обмотка понижающего трансформатора содержит 10 000 витков и включена в сеть переменного тока напряжением 380 В.
 - **а)** Чему равно напряжение во вторичной обмотке, если она состоит из 1000 витков?
 - **б)** Сопротивление вторичной обмотки трансформатора 1 Ом, сила тока в ней 3 А. Чему равно напряжение на нагруз- ке, подключенной к вторичной обмотке трансформатора?
 - в) Чему равен КПД трансформатора?

- 1. Открытый колебательный контур излучает радиоволны с длиной волны 300 м.
 - а) Определите частоту излучаемых волн.

- **б)** Определите индуктивность контура, если его емкость $5000~\text{п}\Phi$.
- **в)** На сколько и как нужно изменить индуктивность контура, чтобы излучались радиоволны вдвое большей длины волны?
- 2. В сеть переменного тока с частотой 50 Гц и напряжением 220 В включен конденсатор емкостью 4 мкФ.
 - а) Чему равна сила тока в цепи?
- **б)** Определите индуктивность катушки, которую нужно включить в данную цепь, чтобы в цепи наступил резонанс.
- **в)** Чему будет равна резонансная частота в цепи, если параллельно с имеющимся конденсатором включить такой же конденсатор?
- 3. Напряжение на первичной обмотке трансформатора 6 В, а на вторичной обмотке 120 В.
- **а)** Чему равна сила тока во вторичной обмотке, если сила тока в первичной обмотке равна 4 A?
- **б)** Определите напряжение на выходе трансформатора, если его КПД равен 95%.
- в) Чему равно сопротивление вторичной обмотки транс-форматора?

Раздел 5. Оптика

Тема 5.1

Природа света

Тест 14

- 1. Длина световой волны в жидкости 564 нм, а частота 4 \cdot $10^{14}\,\Gamma_{\text{II}}$.
- **а)** Чему равен абсолютный показатель преломления этой жилкости?

- **б)** Под каким углом должен упасть луч на поверхность этой жидкости, чтобы преломленный луч оказался перпендикулярным отраженному лучу?
- **в)** На каком расстоянии от места падения выйдет луч из жидкости, если на глубине 50 см поместить горизонтально плоское зеркало?
- 2. Предмет расположен на расстоянии 15 см от собирающей линзы, оптическая сила которой 10 дптр.
- **а)** На каком расстоянии от линзы получится изображе- ние? Выполните построение изображения в линзе и дайте его характеристику.
- **б)** Как изменится размер изображения, если расстояние между предметом и линзой увеличить в 2 раза?
- **в)** Постройте примерный график зависимости увеличе- ния линзы от расстояния между предметом и линзой.

Вариант 2

- 1. Луч света переходит из воды в стекло. Скорость света в воде в 1,2 раза больше, чем в стекле.
- **а)** Определите показатель преломления стекла, если показатель преломления воды 1,33.
- **б)** На какой угол отклонится луч от первоначального направления, если угол падения луча на границу между этими средами 30°?
 - в) На сколько смещается луч при выходе из стекла, если стекло представляет собой плоскопараллельную пластинку

толшиной 2 см?

- 2. Предмет расположен на расстоянии 15 см от рассеивающей линзы с фокусным расстоянием 10 см.
- **а)** На каком расстоянии от линзы получится изображение? Выполните построение изображения в линзе и дайте его характеристику.

- **б)** Как изменится размер изображения, если расстояние между предметом и линзой уменьшить в 2 раза?
- **в)** При каком условии при помощи данной линзы можно получить действительное изображение предмета?

Тема 5.2

Волновые свойствасвета

Тест 15

Вариант 1

- .1.С помощью дифракционной решетки получают на экране спектр солнечного света.
- **а)** Линия какого цвета в спектре первого порядка будет дальше всего от центрального максимума? Почему?
- **6)** Чему равен период дифракционной решетки, если ли- ния этого цвета длиной волны 760 нм получена на расстоя- нии 15,2 см от центрального максимума и на расстоянии 1 м от решетки?
- **в)** Определите наибольший порядок дифракционного максимума, который можно получить, используя данную дифракционную решетку, для линии этого цвета.

- 1.С помощью дифракционной решетки получают на экране спектр солнечного света.
- **а)** Линия какого цвета в спектре первого порядка будет ближе всего от центрального максимума? Почему?
- **б)** Чему равна длина волны этого цвета спектра, если ее максимум расположен на расстоянии 3,6 см от центрального максимума и на расстоянии 1,8 м от решетки с периодом 0,02 мм?
- **в)** Чему равна длина всего спектра первого порядка на экране, если наибольшая длина световой волны видимой части спектра в 2 раза больше рассчитанной в задании **б** длины волны?

Тема 5.3

Специальная теория относительности

Тест 16

Вариант	1	•
---------	---	---

Вариант 1.			
Внимание: V-	- скорость тел ((частиц)	
1. Кто из ниж	е указанных уче	ных является созд	цателем
специальной т	геории относите	льности (СТО)?	
а) Арно Пензи	иас	б) Альберт Ма	айкельсон
с) Альберт Эй	нштейн	д) Джеймс Ма	аксвелл
2. В каких еди	ницах измеряет	ся энергия покоя	тела (частицы) в
СИ?			
а) Дж	б) Дж/кг	c) Дж/м ³	д) кг м /c
3. Укажите фо	рмулу Эйнштей	і́на:	
a) $E = m_0 v^2$	$6) E = c m^2$	c) E = $\frac{m^2}{2}$	$\frac{v^2}{E}$ д) E =
mc^2		2	2
4. Какая из ча	стиц не имеет м	ассы покоя?	
а) электрон	б) фотон		
	д) протон		
5. Тело (космі	ический корабль	ь) движется со ско	ростью 0,95 с.
•	продольные раз	•	
а) увеличиваю	отся б) ум	иеньшаются	с) не
изменяются			
	ий корабль движ		
со скоростью	0,87 с. При этом	и его масса	
	навтов, масса пр	•	
•	•	за. Как изменится	
время использования запаса питания для космонавтов?			
а) увеличится	в 2 раза		

с) не изменится		
д) увеличится в $\sqrt{2}$ р	оаза	
7. При нагревании тел	их масса	
а) увеличивается	б) уменьшается	с) не изменяется
8. Частица, испущенна	я из космического кор	рабля движется со
скоростью v ₁ .		

относительно корабля. Скорость космического корабля v. Чему равна скорость частицы v_2 относительно Земли? v_1 близки к скорости света.

a)
$$v_2 = v_1 + v$$
 6) $v_2 = \sqrt{v_1^2 + v^2}$ c) $v_2 = \frac{v_1 + v_2}{1 + \frac{v_1 v_2}{c^2}}$

9. Сколько времени свет идет от Земли до Плутона? Расстояние от Земли до Плутона 5,9 млрд. км. Ответ округлите до целых c) $2*10^4$ c π) 2*10⁵ a) 20 c б) 2000 с

c

б) уменьшится в 2 раза

10. Чему равна масса тела, движущегося со скоростью 0,8 с.

Масса покоящегося тела 6 кг.

а) 10 кг б) 6 кг с) 4,8 кг д) 3,6 кг

11. Телу какой массы соответствует энергия покоя $9*10^{13}$ Дж?

б) 10 г a) 1 г

с) 100 г д) 1 кг

12. * Во сколько раз увеличивается масса частицы при движении со скоростью 0,99 с?

Same Ambition B S	Pusu.		
a) $2,77*10^8$ m/c	б) 2	$,8*10^{8}$ м/с	c)
$2,83*10^8 \text{ m/c}$			
д) $2,89*10^8$ м/с	e) 2,5	96*10 ⁸ м/с	
Bнимание: $V-c$	корость тел (ча	"	-
•		ециальная теория	Я
относительност	и?		
a) 1875	б) 1905	c) 1955	д) 1975
2. В каких единг	ицах измеряется	импульс тела (ча	астицы)?
а) Дж/м	б) Дж / кг	с) кг м / с	д) кг м /
	мулу релятивист		
a) m = $\frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$	б) $m = m_0 \sqrt{1}$	$\frac{-\frac{v^2}{c^2}}{c} \qquad c) m = -\frac{1}{c}$	$\frac{m_0}{\sqrt{1-\frac{c^2}{v^2}}}$ д)
$\mathbf{m} = \mathbf{m}_0 \sqrt{1 - \frac{c^2}{v^2}}$			
4. Чему равна сн	сорость света в в	акууме?	

б) 300 000 км/ч

Подсказываю: $0.99^2 = 0.98$, $\sqrt{0.02} = 0.14$. Ответ округлите до

б) 1,7 с) 2,3 д) 7,1

13* С какой скоростью должна лететь ракета, чтобы время в ней

e) 71

c) $300\ 000\ \text{km/c}$

десятых

замеллялось в 3 раза?

a) $300\ 000\ \text{m/c}$

д) $3*10^8$ км/с

a) 1,4

а) увеличивается	б) уменьц	пается	с) не
изменяется			
6. Космический кора	абль движется	co	
скоростью 0,5 с отн	осительно Зем	или. Из косми	ческого корабля
испускается светово	й сигнал в наг	равлении дви	ижения корабля.
Чему равна скорост	ь светового си	гнала относит	гельно Земли?
a) 0,5 c	б) с	c) 1,5 c	д) с
$\sqrt{1,5}$	ŕ		,
7. В космическом ко	рабле, движуг	цемся со скор	остью, близкой і
скорости света врем	я		
а) идет быстрее	б) и,	дет	
медленнее			
с) на Земле и космич	ческом корабл	е время идет	одинаково.
8. Если элементарна	я частица дви:	жется со скор	остью света, то .
а) масса покоя части		_	
б) частица обладает			
с) на частицу действ	-	-	емли
д) частица не может	•		
9. Сколько времени	•		
от Земли до	0201 11401 01 0		.) h
Меркурия 58 млн км	AT.		
a) 0,02 c	б) 100 с	c) 200 c	д) 1000 с
a) 0,02 C	0) 100 C	C) 200 C	д) 1000 С

5. Тело или частица движется со скоростью, близкой к скорости

света. При этом ее масса относительно неподвижного

наблюдателя...

10. Длина по	окоящегося стерж	:ня 10 м.	Чему будет р	равна его
длина при д	вижении со скоро	остью 0,6	c?	
а) 6 м	б) 8 м	и c) 10) м	д) 16 м
11. Найдите	энергию покоя эл	пектрона.	•	
a) 8,1*10 ⁻¹⁴ [Дж б) 8,1*1	0-16 Дж с	c) 2,7*10 ⁻¹⁵ Д	ж д)
2,7*10 ⁻²² Дж				
12* C косми	ческого корабля,	удаляюш	цегося от Зем	ли со
скоростью 0	,75 с, стартует ра	кета в на	правлении д	вижения
корабля. Ско	орость ракеты отн	носителы	но Земли 0,90	б с. Какова
скорость ран	сеты относительн	о корабла	я?	
a) 0,75 c	б) с	c) 0,	,8 c	д) 0,85 с
e) 0,96 c	,	ŕ		,
13* Ракета д	вижется со скорс	стью 0,9	68 с. Во скол	ько раз
отличается в	время, измеренно	е в ракет	е, от времени	і, измеренного
по неподвиж	кным часам?	•	•	•
а) 5 раз	б) 4 раза	c) 3	3 раза	д) 2 раза
e) 1,5 pasa				_

Раздел 6. Квантовая физика

Тема 6.1

Квантовая оптика

Тест 17

Вариант 1

- 1. При облучении атома водорода монохроматическим светом электрон перешел с первой орбиты на третью, а при возвращении в исходное состояние он перешел сна- чала с третьей орбиты на вторую, а затем со второй на первую.
- **а)** Изобразите эти переходы на диаграмме энергетических состояний атома водорода.
- **6)** Чему равна длина волны излучения при облучении атома водорода, если его энергия увеличилась на $3 \cdot 10^{-19}$ Дж?
- **в)** Во сколько раз отличается частота излучения при переходе электрона с третьей орбиты на вторую от частоты излучения при переходе со второй орбиты на первую?
- 2.Радиоактивный изотоп ²⁰F испытывает β-распад.
 - **а)** Напишите ядерную реакцию для этого случая. Как изменятся масса ядра и номер элемента?
 - **б)** Какая доля радиоактивных ядер распадется за 36 с, если период полураспада изотопа 20F равен 12 с?
 - **в)** Постройте график зависимости доли распавшихся радиоактивных ядер от времени в промежутке времени от 0 до 36 с.

- 1. Электрон в атоме водорода перешел с четвертой орбиты на вторую.
- **а)** Возможные пути перехода изобразите на диаграмме энергетических состояний атома водорода.
- **б)** При непосредственном переходе электронов с четвертой орбиты на вторую излучается фотон с энергией 2,525 эВ. Чему равна частота этого излучения?

- **в)** Во сколько раз отличается длина волны излучения при переходе электрона с четвертой орбиты на третью от длины волны излучения при переходе с третьей орбиты на вторую?
- 2. Радиоактивный изотоп $^{222}_{86}$ Rn испытывает α -распад.
- **а)** Напишите ядерную реакцию для этого случая. Как изменятся масса ядра и номер элемента?
 - **б)** Через какое время число радиоактивных ядер уменьшится в 8 раз? Период полураспада изотопа 222 Rn 3,825 сут. в) Постройте график зависимости числа распавшихся ядер $\Delta N = (N_0 N)$ от времени примерно за время, получен-

ное в задании 6).

55

Тема 6.2

Физика атома иатомного ядра

Тест 18

Вариант 1

- 1. При бомбардировке $^{27}_{13}$ Al нейтронами испускается α -частица.
- **а)** Напишите ядерную реакцию. Укажите состав получившегося ядра.
- **б)** Определите дефект массы получившегося ядра. (Мас- су получившегося изотопа принять равной 23,99857 а. е. м.)
- **в)** Определите удельную энергию связи получившегося ядра.

- 1.При бомбардировке ¹⁴N α-частицами испускается протон.
- **а)** Напишите ядерную реакцию. Укажите состав получившегося ядра.
- б) Какая энергия выделяется при такой ядерной реак-ции?
- **в)** Какой кинетической энергией обладало ядро ¹⁴N до вступления в реакцию? (Кинетическими энергиями ядер, образовавшихся в результате реакции, пренебречь.)

Раздел 7. Строение Вселенной Тема 7.1

Строение Солнечной системы

Тест 19

I вариант.

- 1. Солнечная система это:
- а) планетная система со звездой в центре и природными космическими объектами, которые вращаются вокруг Солнца
- б) звездная система с планетами
- в) система из Солнца и планет
- 2. Солнечная система входит в состав:
- а) рукав Ориона
- б) Млечного Пути
- в) местную группу галактик
- 3. Возраст Солнечной системы:
- а) 1 млрд лет
- б) 4,57 млрд лет
- в) 3 млрд лет
- 4. Какие планеты входят в состав Солнечной системы?
- а) планеты земной группы, метеороиды и ледяные гиганты
- б) внутренние планеты, астероиды и карликовые планеты
- в) планеты земной группы, газовые гиганты, карликовые планеты
- 5. В Солнечную систему входят планеты земной группы:
- а) Меркурий, Земля, Марс, Венера
- б) Марс, Юпитер, Земля, Венера
- в) Меркурий, Земля, Сатурн, Марс
- 6. 5 официально признанных карликовых планет в

Солнечной системе. Это:

- а) Церера, Плутон, Хуамеа, Макемаке, Эрида
- б) Плутон, Седна, Хаумеа, Квавар, Орк
- в) Паллада, Веста, Гигея, Плутон, Церера
- 7. Какие области Солнечной системы заполнены малыми телами:
- а) внешняя область Солнечной системы и облако Оорта
- б) пояс астероидов между Марсом и Юпитером и область за орбитой Нептуна
- в) гелиосфера и пояс астероидов
- 8. Что представляет собой «солнечный ветер»?
- а) поток гелиево-водородной плазмы, который истекает из солнечной короны в космос
- б) поток фотонов от Солнца, долетающий до Земли
- в) конвективное движение в атмосфере Солнца
- 9. Что порождает на планетах Солнечной системы магнитосферу, полярное сияние и радиационный пояс?
- а) Межзвездный газ
- б) солнечный ветер
- в) космические лучи
- 10. Виды солнечного ветра?
- а) медленный, быстрый ветер и возмущенные потоки
- б) гелиосферный токовый слой и быстрый ветер
- в) медленный и быстрый
- 11. Какая звезда находится ближе всего к Солнцу?
- а) Вольфа-Райе
- б) Проксима Центавра
- в) Тельца
- 12. Солние является?
- а) желтым карликом

- б) белым карликом
- в) красным гигантом
- 13. Внутренняя область Солнечной системы включает в себя:
- а) планеты земной группы и астероиды
- б) планеты земной группы
- в) планеты-гиганты
- 14. Внешняя область Солнечной системы включает в себя:
- а) планеты земной группы и астероиды
- б) Газовые гиганты, астероидно-кометно-газовые пояса Койпера, транснептуновые объекты, облака Оорта и Рассеянного диска
- в) планеты земной группы и газовые гиганты
- 15. Что такое Пояс Койпера?
- а) область Солнечной системы от орбиты Нептуна (30 астрономических единиц от Солнца до 55 астрономических единиц от Солнца)
- б) другое название пояса астероидов
- в) другое название облака Оорта
- 16. Средняя скорость солнечного ветра, которую наблюдают на Земле?
- а) 450 км/c
- б) 25 км/с
- в) 40 км/c
- 17. Какая планета Солнечной системы имеет наибольшее количество спутников:
- а) Сатурн
- б) Юпитер
- в) Уран
- 18. Сколько спутников у Венеры:
- а) нет спутников

- б) два спутника
- в) 67 спутников
- 19. Какие объекты Солнечной системы можно наблюдать невооруженным глазом с Земли?
- а) Солнце, Венеру, Марс, Сатурн, Юпитер, Луну, Меркурий, кометы
- б) Солнце, Луну, Марс и Венеру
- в) Солнце, Луну, Марс, Венеру, Уран
- 20. Какой астроном разработал гелиоцентрическую систему мира?
- а) Клавдий Птолемей
- б) Николай Коперник
- в) Галилео Галилей

II вариант.

- 1. Млечный Путь спиральная галактика, состоящая приблизительно из:
- а) 200 млрд звезд
- б) 1 звезды
- в) 10 звезд
- 2. Солнце вращается вокруг центра галактики со скоростью и совершает полный оборот (галактический год):
- а) 254 км/с 230 млн лет
- б) 450 км/с 30 млн лет
- в) 150 км/с 100 млн лет
- 3. Местное межзвездное облако это:
- а) галактическая окрестность, примыкающая
- к Солнечной системе
- б) плотный участок области разреженного газа
- в) радиоактивная пыль
- 4. Планеты Солнечной системы имеют форму:
- а) сфероидальную, сплющенную у полюсов

- б) эвклидовую
- в) гиперболическую
- 5. Эмпирическая формула, приблизительно описывающая расстояния между планетами Солнечной системы и Солнцем, называется:
- а) системой Птолемея
- б) правилом Тициуса-Боде
- в) система високосов юлианский календарь
- 6. Шведская Солнечная система это:
- а) самая крупная модель Солнечной системы, расположенная на территории Швеции
- б) теория строения Солнечной системы
- в) Здание в Стокгольме
- 7. Что является «Солнцем» в шведской солнечной системе:
- а) Эрикссон-Глоб самое большое сферическое здание в мире
- б) шар из меди в торговом центре
- в) монумент в королевском технологическом институте
- 8. Где установлен Юпитер в шведской солнечной системе:
- а) центр кругового перекрестка около аэропорта Стокгольм-Арланда
- б) Уппсала, площадь Цельсия
- в) научный центр Балтазара в городе Шёвде
- 9. В какой еще стране существует модель Солнечной системы:
- а) Хорватия
- б) Англия
- в) Россия
- 10. Обсерватория солнечной динамики, запущенная
- 11 февраля 2010 года космической обсерваторией
- НАСА, рассчитанная на 5 лет ее цель:
- а) развитие знаний, нужных для эффективного решения

солнечно-земных связей

- б) контроль над Солнцем
- в) фотографирование Солнца

11. О каком законе Кеплера идет речь:

- «Куб большой полуоси орбиты тела, делённый на квадрат периода его обращений и на сумму масс тел, есть величина постоянная
- а) первый закон Кеплера
- б) второй закон Кеплера
- в) третий закон Кеплера
- г) четвертый закон Кеплера

12. Количество планет в Солнечной системе:

- а) шесть
- б) семь
- в) девять
- г) восемь

13. Название расстояния от Земли до Солнца:

- а) световым годом
- б) парсеком
- в) астрономическая единица
- г) годичный параллакс

14. Определите, по каким орбитам движутся планеты:

- а) круговым
- б) гиперболическим
- в) эллиптическим
- г) параболическим

15. Основные причины смены времен:

- а) изменение расстояния до Солнца вследствие движения Земли по эллиптической орбите
- б) наклон земной оси к плоскости земной орбиты
- в) вращение Земли вокруг своей оси
- г) перепадами температур

16. Чем объясняется явление приливов и отливов?

- а) медленным осевым вращением Луны
- б) притяжением Луны и большими размерами Земли
- в) большими перепадами температур на Луне
- г) движением Луны вокруг Земли
- д) лунным затмением

17. Первым открыл законы движения планет Солнечной системы?

- а) Николай Коперник
- б) Иоганн Кеплер
- в) Джордано Бруно
- г) Жак Кассини

18. Плутон – планета?

- а) да
- б) нет

19. Когда Земля из-за своего годичного движения по орбите ближе всего к Солнцу?

- а) летом
- б) в перигелии
- в) зимой
- г) в афелии

20. Выберите, какие тела не входят в состав солнечной системы?

- а) Солнце
- б) большие планеты и их спутники
- в) астероиды
- г) кометы
- д) метеоры

Тема 7.2

Эволюция Вселенной

Тест 20

- 1. Астрономия наука, изучающая ...
- 2. Телескоп необходим для того, чтобы ...

- 3. Самая высокая точка небесной сферы называется ...
- 4. Линия пересечения плоскости небесного горизонта и меридиана называется ...
- 5. Третья планета от Солнца это ...
- 6. По каким орбитам обращаются планеты вокруг Солнца?
- 7. Ближайшая к Солнцу точка орбиты планеты называется ... Вариант 2
- 1. При удалении наблюдателя от источника света линии спектра ...
- 2. Все планеты-гиганты характеризуются ...
- 3. Астероиды вращаются между орбитами ...
- 4. Какие вещества преобладают в атмосферах звезд?
- 5. К какому классу звезд относится Солнце?
- 6. На сколько созвездий разделено небо?
- 7. Кто открыл законы движения планет вокруг Солнца?
- 3. Где на Земле не видно звезд южного полушария неба?
- 4. Через сколько созвездий пролегает путь Солнца?
- Б) 12.
- 5. Период обращения планет вокруг Солнца по отношению к звездам называется ...
- 6. Полный оборот вокруг Земли Луна совершает за ...?

6.КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

ПЕРЕЧЕНЬ

Теоретических заданий для проведения экзамена по ОУД.11 ФИЗИКА

- 1. Физика наука о природе. Связь с другими науками.
- 2. Внутренняя энергия. Степени свободы молекулы.
- 3. Изменение внутренней энергии путем совершения работы.
- 4. Количество теплоты. Диаграмма фазовых переходов.
- 5. Уравнение теплового баланса.
- 6. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Адиабатный процесс.
- 7.Тепловые двигатели. Принцип действия тепловых двигателей. Коэффициент полезного действия тепловых двигателей.
 - 8. Пары. Способы парообразования.
- 9. Влажность воздуха. Виды влажности. Приборы для определения влажности воздуха.
 - 10. Электризация. Виды электрических зарядов. Закон сохранения зарядов.
 - 11. Взаимодействие точечных зарядов. Закон Кулона.
- 12. Электрическое поле. Силовая характеристика электрического поля напряженность. Принцип суперпозиции.
- 13. Однородное электрическое поле. Работа при перемещении заряда в однородном электрическом поле.
 - 14. Потенциал поля точечного заряда. Разность потенциалов напряжение.
 - 15. Проводники и диэлектрики.
- 16. Электроемкость. Единицы измерения электроемкости. Конденсаторы. Виды конденсаторов. Электроемкость конденсатора.
 - 17. Соединения конденсаторов.
- 18. Электрический ток. Сила тока, плотность тока. Сила тока, плотность тока с электронной точки зрения.
- 19. Закон Ома для участка цепи. Электрическое сопротивление. Удельное сопротивление.
- 20. Соединения резисторов. Законы последовательного и параллельного соединений резисторов.
 - 21. Электрические цепи. Электродвижущая сила. Закон Ома для полной цепи.
- 22. Тепловое действие тока. Работа тока, мощность тока. Закон Джоуля- Ленца. Короткое замыкание. Предохранители.
- 23. Электролиза. Электрохимический эквивалент. Законы электролиза. Применение электролиза.
- 24. Электрический ток в полупроводниках. Собственная и примесная проводимости полупроводников.
- 25. Магнитное поле. Силовые линии магнитного поля. Правила буравчика для прямого и кругового токов. Характеристики магнитного поля.
 - 26. Сила магнитного взаимодействия. Магнитная проницаемость. Сила Ампера.

Сила Лоренца.

- 27. Связь напряженности и вектора магнитной индукции. Магнитные свойства вещества. Намагничивание ферромагнетиков. Явление магнитного гестерезиса.
- 28. Работа при перемещении проводника в магнитном поле. Потокосцепление. Индуктивность.
- 29. Открытие электромагнитной индукции. Индукционный ток соленоида (правило Ленца). Э.Д.С. индукционного тока соленоида.
- 30. Индукционный ток прямого проводника (правило правой руки).Э.Д.С. индукционного тока прямого проводника.
 - 31. Явление самоиндукции. Э.Д.С. самоиндукции. Энергия магнитного поля.
- 32. Гармонические колебания. Уравнение гармонических колебаний. Параметры колебательного движения.
- 33.Переменный ток. Принцип получения переменного тока. Действующее значение силы тока, напряжения и э.д.с. в цепи переменного тока.
- 34. Трансформатор. Виды трансформаторов. Коэффициент трансформации. Закон трансформации. ЛЭП.
 - 35. Виды сопротивление в цепи переменного тока.
 - 36. Закон Ома для цепи переменного тока. Мощность в цепи переменного тока.
- 37. Колебательный контур. Период электромагнитных колебаний (формула Томсона).
 - 38. Транзисторный генератор незатухающих электромагнитных колебаний.
 - 39. Электромагнитные волны. Свойства электромагнитных волн.
 - 40. Принцип радиотелефонной связи. Радиолокация.
 - 41. Природа света. Корпускулярно-волновой дуализм света.
 - 42. Определение скорости света. Законы распространения света.
 - 43. Волновые свойства света. Интерференция, дифракция, поляризация.
- 44. Дисперсия. Спектры. Виды спектров. Спектральный анализ. Приборы для получения спектров.
- 45. Фотоэффект. Теория фотоэффекта. Уравнение фотоэффекта. Фотоны. Энергия и импульс фотона. Применение фотоэффекта.
- 46. Фотометрия. Светотехнические величины. Приборы для определения светотехнических величин.
 - 47. Строение атома. Опыты Резерфорда.
 - 48. Противоречия планетарной модели строения атома. Постулаты Бора.
 - 49. Строение ядра атома. Открытие радиоактивности.
- 50.Закон радиоактивного распада. Протонно- нейтронная модель строения ядра атома.
 - 51. Дефект массы. Энергия связи атомных ядер.
 - 52. Ядерные реакции, использование ядерной энергии.

ПЕРЕЧЕНЬ

Практических заданий для проведения экзамена по ОУД.11 ФИЗИКА

- 1. Два параллельных проводника длиной 2,8 м каждый находятся на расстоянии 12 см друг от друга и притягиваются с силой 3,4 н. Сила тока в первом 58 А. Определить силу тока во втором проводнике.
- 2. Соленоид имеет 1400 витков, длину 1,6 м и радиус 4,8 см.Сила тока в соленоиде 6,3 А. Определить магнитный поток, потокосцепление и индуктивность соленоида.

- 3. Длина волны, соответствующая красной границе фотоэффекта для натрия, составляет 530 нм. Определить работу выхода электронов из натрия.
- 4. Работа выхода электронов из золота равна 4,59 эВ. Найти красную границу фотоэффекта для золота.
- 5. Сила тока в катушке с индуктивностью 0,5 Гн изменяется по закону I=0,1 sin 628t. Определить зависимость от времени напряжения на катушке и ее индуктивное сопротивление.
- 6. Два конденсатора с емкостями 4 и 1 мкФ соединили последовательно и подключили к напряжению 220 В. Найти общую электроемкость конденсаторов и напряжений на них.
- 7. Определить энергию магнитного поля катушки содержащей 120 витков, если при силе тока 7,5 А магнитный поток в ней равен 2,3 мВб.
- 8. Определить энергию магнитного поля катушки, содержащей 120 витков, если при силе тока 7,5 А магнитный поток в ней равен 2,3 мВб.
- 9. Определить силу тока в соленоиде, длиной 64 см, если он содержит 820 витков, а индукция магнитного поля внутри него $1,2 \cdot 10^{-3}$ Тл.
- 10. Катушка с индуктивностью 35 мГн включается в сеть переменного тока. Определить индуктивное сопротивление катушки при частоте 60, 240 и 480 Гц.
- 11. Какой длины электромагнитные волны излучает в вакууме колебательный контур с емкостью 2,6 п Φ и с индуктивностью 0,012 м Γ н, когда в нем происходят колебания с собственной частотой.
- 12. Ядра изотопа тория ($_90^232$)Тh претерпевают α распад, два β распада и еще один α распад. Какие ядра после этого получаются?
- 13. Два параллельных проводника с протекающими по ним одинаковыми токами находятся на расстоянии 8,7 см друг от друга и притягиваются с силой 0,025 Н. Определить силу тока в проводниках, если длина каждого из них равна 320 см.
- 14. Вычислить частоту собственных колебаний в контуре с активным сопротивлением равным нулю, если индуктивность этого контура равна 12 мГн, а его емкость 0,88 мкФ. Как измениться частота колебаний, если в контур включить последовательно еще три таких же конденсатора?
- 15. Два конденсатора с емкостями 4 и 1 мкФ соединили последовательно и подключили к напряжению 220 В. Найти общую электроемкость конденсаторов и напряжений на них.
- 16. Определить энергию магнитного поля катушки содержащей 120 витков, если при силе тока 7,5 А магнитный поток в ней равен 2,3 мВб.
- 17. Определить величину точечного заряда, если на расстоянии 5 см от него напряженность поля в воздухе равна $2 \cdot 10^4$ H/Kл?
- 18. Аккумулятор, с э.д.с. 2 В при замыкании на внешнее сопротивление 4,8 Ом, дает силу тока 0,4 А. Определить внутреннее сопротивление аккумулятора и напряжение на его зажимах.
- 19. Какой длины электромагнитные волны излучает в вакууме колебательный контур с емкостью 2,6 пФ и с индуктивностью 0,012 мГн, когда в нем происходят колебания с собственной частотой.
- 20.Ядра изотопа тория ($_90^232$)Тh претерпевают α распад, два β распада и и еще один α распад. Какие ядра после этого получаются?
- 21. Вычислить частоту собственных колебаний в контуре с активным сопротивлением равным нулю, если индуктивность этого контура равна 12 мГн, а его емкость 0,88 мкФ. Как измениться частота колебаний, если в контур включить последовательно еще три таких же конденсатора?

- 22. Луч света переходит из глицерина в воздух. Каков будет угол преломления луча, если он падает на границу раздела двух сред под углом 22°?
- 23. К генератору с Э.Д.С. 120 В и внутренним сопротивлением 3 Ом присоединили нагревательный прибор сопротивлением 21 Ом. Определить силу тока и напряжение в цепи.
- 24. Определить плотность тока, если за 0,4с через проводник, площадью поперечного сечения 1,2 мм2 , прошло $6\cdot 10^{18}$ электронов.
- 25. Четыре проводника соединены по схеме, R1= 1,6 Ом,R2 = Ом, R3 = 6 Ом, R4=12 Ом. Общее напряжение на резисторах 18 В.Определить общее сопротивление и силу тока в каждом резисторе.
- 26. К генератору с Э.Д.С. 120 В и внутренним сопротивлением 3 Ом присоединили нагревательный прибор сопротивлением 21 Ом. Определить силу тока и напряжение в цепи.
- 27. Два параллельных проводника с протекающими по ним одинаковыми токами находятся на расстоянии 8,7 см друг от друга и притягиваются с силой 0,025 Н. Определить силу тока в проводниках, если длина каждого из них равна 320 см
- 28. Вычислить частоту собственных колебаний в контуре с активным сопротивлением равным нулю, если индуктивность этого контура равна 12 мГн, а его емкость 0,88 мкФ. Как измениться частота колебаний, если в контур включить последовательно еще три таких же конденсатора?
- 29. Два конденсатора с емкостями 4 и 1 мкФ соединили последовательно и подключили к напряжению 220 В. Найти общую электроемкость конденсаторов и напряжений на них.
- 30. Катушка с индуктивностью 35 мГн включается в сеть переменного тока. Определить индуктивное сопротивление катушки при частоте 60, 240 и 480 Гц.
- 31.Определить плотность тока, если за 0.4с через проводник, площадью поперечного сечения 1.2 мм2, прошло $6\cdot10^{18}$ электронов.
- 32. Ядра изотопа тория ($_90^232$)Тh претерпевают α распад, два β распада и еще один α распад. Какие ядра после этого получаются?

Система оценивания результатов промежуточной аттестации: оценка <5> -90-100 <6, <4> -70-89 <6>, <3> - 50-69 <6>, <2> - 49- ниже

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №1 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24,ЭЭМ-24, «06» ноября 2024 г. Председатель ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Единая физическая картина мира. Физика и научно- техническая революция.
- 2. Гармонические колебания. Уравнение гармонических колебаний.

Часть 2. Практическое задание

3. Длина волны, соответствующая красной границе фотоэффекта для натрия, составляет 530 нм. Определить работу выхода электронов из натрия.

Преподаватель		В.В. Солодовников
---------------	--	-------------------

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №2 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24, ЭЭМ-24, «06» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Специальная теория относительности. Постулаты Эйнштейна.
- 2. Закон трансформации. ЛЭП.

Часть 2. Практическое задание

3. Работа выхода электронов из золота равна 4,59 эВ. Найти красную границу фотоэффекта для золота.

Преподаватель	В.В. Солодовников
11001107020101012	2121 001107021111102

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №3 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24,ЭЭМ-24, «06» ноября 2024 г. Председатель ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Виды сопротивление в цепи переменного тока.
- 2. Строение атома. Опыты Резерфорда.

Часть 2. Практическое задание

3. Сила тока в катушке с индуктивностью 0.5 Гн изменяется по закону $I = 0.1 \sin 628t$. Определить зависимость от времени напряжения на катушке и ее индуктивное сопротивление.

Преподаватель	_ В.В. Солодовников
---------------	---------------------

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** БИЛЕТ №4 цикловой комиссии Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24, ЭЭМ-24, «06» ноября 2024 г. Председатель ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Зависимость сопротивления от температуры. Сверхпроводимость.
- 2. Адиабатный процесс. Принцип действия тепловых машин. КПД теплового двигателя

Часть 2. Практическое задание

3.Два конденсатора с емкостями 4 и 1 мкФ соединили последовательно и подключили к напряжению 220 В. Найти общую электроемкость конденсаторов и напряжений на них.

Преподаватель	В.В. Солодовников
---------------	-------------------

Рассмотрено на заседании цикловой комиссии «Горных дисциплин» протокол № 3 «05» ноября 2024 г. Председатель Н.А. Жук	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №5 ПО ОУД. 11 ФИЗИКА Группа СЭЗС-24,ЭЭМ-24, ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Семестр второй	УТВЕРЖДАЮ Зам. директора по учебной работе О.В. Папанова «06» ноября 2024 г.
--	--	--

Часть 1. Теоретическое задание

- 1. Гармонические колебания: свободные, вынужденные, затухающие.
- Превращение энергии при колебательном движении.
- 2. Закон Ома для участка цепи.

Часть 2. Практическое задание

3.Определить энергию магнитного поля катушки содержащей 120 витков, если при силе тока 7,5 А магнитный поток в ней равен 2,3 мВб

Преподаватель	В.В. Солодовников

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №6 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24, ЭЭМ-24, «06» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Волны : продольные и поперечные. Звуковые волны. Ультразвук и его применение.
 - 2. Связь напряженности и вектора магнитной индукции.

Часть 2. Практическое задание

3. Определить энергию магнитного поля катушки, содержащей 120 витков, если при силе тока 7,5 А магнитный поток в ней равен 2,3 мВб.

Преподаватель	В.В. Солодовников
преподаватель	D.D. Солодовников

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №7 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24, ЭЭМ-24, «06» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Закон Ома для полной цепи.
- 2. Закон Джоуля- Ленца. Короткое замыкание. Предохранители.

Часть 2. Практическое задание

3. Определить силу тока в соленоиде, длиной 64 см, если он содержит 820 витков, а индукция магнитного поля внутри него $1,2\cdot 10^{-3}$ Тл

Преподаватель		В.В. Солодовников
---------------	--	-------------------

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №8 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24,ЭЭМ-24, «06» ноября 2024 г. Председатель ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Волновые свойства света. Интерференция, дифракция, поляризация.
- 2. Действующее значение силы тока, напряжения и э.д.с. в цепи переменного тока.

Часть 2. Практическое задание

3. Катушка с индуктивностью 35 мГн включается в сеть переменного тока. Определить индуктивное сопротивление катушки при частоте 60, 240 и 480 Гц.

Преподаватель	_ В.В. Солодовников
---------------	---------------------

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №9 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24, ЭЭМ-24, «06» ноября 2024 г. Председатель ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Корпускулярно-волновой дуализм света.
- 2. Переменный ток. Принцип получения переменного тока.

Часть 2. Практическое задание

3. Какой длины электромагнитные волны излучает в вакууме колебательный контур с емкостью 2,6 пФ и с индуктивностью 0,012 мГн, когда в нем происходят колебания с собственной частотой.

Преподаватель	В.В. Солодовников
---------------	-------------------

Рассмотрено на заседании ЭКЗАМЕНАЦИОННЫЙ **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №10 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24, ЭЭМ-24, «06» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Электромагнитные волны. Свойства электромагнитных волн.
- 2. Дисперсия. Спектры. Виды спектров. Спектральный анализ. Приборы для получения спектров

Часть 2. Практическое задание

3.Ядра изотопа	гория ²³² Th п _]	ретерпевают	α- распад,	два β-	распада і	и и еще	один α
распад. Какие ядра по	сле этого полу	учаются?					

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №11 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3 ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» ноября 2024 г. Группа СЭЗС-24,ЭЭМ-24, «06» ноября 2024 г. Председатель ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Силовые линии магнитного поля. Правила буравчика для прямого и кругового токов.
 - 2. Закон Ома для полной цепи с несколькими источниками.

Часть 2. Практическое задание

3. Два параллельных проводника с протекающими по ним одинаковыми токами находятся на расстоянии 8,7 см друг от друга и притягиваются с силой 0,025 Н. Определить силу тока в проводниках, если длина каждого из них равна 320 см.

Преподаватель	В.В. Солодовников
---------------	-------------------

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** пикловой комиссии БИЛЕТ №12 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3 ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» ноября 2024 г. Группа СЭЗС-24,ЭЭМ-24, «06» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Индукционный ток прямого проводника (правило правой руки).
- 2. Строение ядра атома. Открытие радиоактивности.

Часть 2. Практическое задание

3. Вычислить частоту собственных колебаний в контуре с активным сопротивлением равным нулю, если индуктивность этого контура равна 12 мГн, а его емкость 0,88 мкФ. Как измениться частота колебаний, если в контур включить последовательно еще три таких же конденсатора?

Преподаватель	В.В. Солодовников
	D.D. CONOGODINAVI

Рассмотрено на заседании ЭКЗАМЕНАЦИОННЫЙ **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №13 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3 ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24,ЭЭМ-24, «<u>06</u>» <u>ноября</u> 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Зависимость сопротивления от температуры. Сверхпроводимость.
- 2. Закон трансформации. ЛЭП.

Часть 2. Практическое задание

3.Два конденсатора с емкостями 4 и 1 мкФ соединили последовательно и подключили к напряжению 220 В. Найти общую электроемкость конденсаторов и напряжений на них.

Преподаватель	В.В. Солодовников

Рассмотрено на заседании ЭКЗАМЕНАЦИОННЫЙ **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №14 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова Группа СЭЗС-24,ЭЭМ-24, «<u>05</u>» <u>ноября 2</u>024 г. «06» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Явление самоиндукции. Э.Д.С. самоиндукции.
- 2. Закон Ома для участка цепи.

Часть 2. Практическое задание

3.Определить энергию магнитного поля катушки содержащей 120 витков, если при силе тока 7,5 А магнитный поток в ней равен 2,3 мВб.

Преподаватель	В.В. Солодовников
прсподаватель	D.D. CՍЛՍДՍБНИКՍБ

Рассмотрено на заседании цикловой комиссии «Горных дисциплин» протокол № 3 «05» ноября 2024 г. Председатель Н.А. Жук

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №15 ПО ОУД. 11 ФИЗИКА Группа СЭЗС-24,ЭЭМ-24, ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Семестр второй

УТВЕРЖДАЮ
Зам. директора по
учебной работе
О.В. Папанова
«06» ноября 2024 г.

Часть 1. Теоретическое задание

- 1. Корпускулярно-волновой дуализм света.
- 2. Переменный ток. Принцип получения переменного тока.

Часть 2. Практическое задание

3. Определить величину точечного заряда, если на расстоянии 5 см от него напряженность поля в воздухе равна $2 \cdot 10^4$ H/Kл?

Преподаватель]	B.B.	Солодовников
---------------	---	------	--------------

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** пикловой комиссии БИЛЕТ №16 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3 ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» ноября 2024 г. Группа СЭЗС-24,ЭЭМ-24, «<u>06</u>» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Корпускулярно-волновой дуализм света.
- 2. Переменный ток. Принцип получения переменного тока.

Часть 2. Практическое задание

3. Какой длины электромагнитные волны излучает в вакууме колебательный контур с емкостью 2,6 пФ и с индуктивностью 0,012 мГн, когда в нем происходят колебания с собственной частотой.

Преподаватель	 _ В.В. Солодовников

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании УТВЕРЖДАЮ пикловой комиссии БИЛЕТ №17 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3 ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24,ЭЭМ-24, «<u>06</u>» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Электромагнитные волны. Свойства электромагнитных волн.
- 2. Дисперсия. Спектры. Виды спектров. Спектральный анализ. Приборы для получения спектров

Часть 2. Практическое задание

3.Я	дра изотопа тория	т ²³² Th претерпевают	α- распад	, два β-	распада и	и еще	один α-
распад. К	акие ядра после э	того получаются?					

Преподаватель В.В. Солодовнико	Преподаватель		В.В. Солодовнико
--------------------------------	---------------	--	------------------

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** пикловой комиссии БИЛЕТ №18 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3 ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» ноября 2024 г. Группа СЭЗС-24,ЭЭМ-24, «<u>06</u>» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Линзы. Построение изображения в линзах.
- 2. Строение ядра атома. Открытие радиоактивности.

Часть 2. Практическое задание

3. Вычислить частоту собственных колебаний в контуре с активным сопротивлением равным нулю, если индуктивность этого контура равна 12 мГн, а его емкость 0,88 мкФ. Как измениться частота колебаний, если в контур включить последовательно еще три таких же конденсатора?

.

Пре	еподаватель	В.В. Солодовников
TT PV	сподаватель	D.D. Conogodinikol

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №19 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № $\underline{3}$ ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24, ЭЭМ-24, «06» ноября 2024 г. Председатель ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Период электромагнитных колебаний (формула Томсона). .
- 2. Приборы для определения светотехнических величин. Фотометр.

Часть 2. Практическое задание

3. Луч света переходит из глицерина в воздух. Каков будет угол преломления луча, если он падает на границу раздела двух сред под углом 22°?

Преподаватель		В.В. Солодовников
---------------	--	-------------------

Часть 1. Теоретическое задание

- 1. Энергия заряженного конденсатора. Объемная плотность энергии.
- 2. Внешний внутренний фотоэффект, законы фотоэффекта.

Часть 2. Практическое задание

3. К генератору с Э.Д.С. 120 В и внутренним сопротивлением 3 Ом присоединили нагревательный прибор сопротивлением 21 Ом. Определить силу тока и напряжение в цепи.

	B B G
Преподаватель	В.В. Солодовников

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №21 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24, ЭЭМ-24, «06» ноября 2024 г. Председатель ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Закон Ома для участка цепи.
- 2. Сила магнитного взаимодействия. Магнитная проницаемость.

Часть 2. Практическое задание

3. Определить плотность тока, если за 0.4с через проводник, площадью поперечного сечения 1.2 мм², прошло $6\cdot10^{18}$ электронов

Преподаватель	В.В. Солодовников
inpensorum .	

Рассмотрено на заседании цикловой комиссии «Горных дисциплин» протокол № 3 «05» ноября 2024 г. Председатель Н.А. Жук

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №22 ПО ОУД. 11 ФИЗИКА Группа СЭЗС-24,ЭЭМ-24, ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Семестр второй

УТВЕРЖДАЮ Зам. директора по учебной работе О.В. Папанова «<u>06</u>» ноября 2024 г.

Часть 1. Теоретическое задание

- 1. Конденсаторы. Виды конденсаторов. Электроемкость конденсатора.
- 2. Работа при перемещении проводника в магнитном поле.

Часть 2. Практическое задание

3. Четыре проводника соединены по схеме, R_1 = 1,6 Ом, R_2 = 4 Ом, R_3 =1,6 Ом, R_4 =12 Ом. Общее напряжение на резисторах 18 В. Определить общее сопротивление и силу тока в каждом резисторе.

Преподаватель В.В. Солодовников

Рассмотрено на заседании ЭКЗАМЕНАЦИОННЫЙ **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №23 Зам. директора по «Горных дисциплин» ПО учебной работе протокол N_{2} 3 ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября</u> 2024 г. Группа СЭЗС-24, ЭЭМ-24, «06» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Соединения конденсаторов.
- 2. Магнитное поле. Правила буравчика для прямого и кругового токов.

Часть 2. Практическое задание

3. Аккумулятор, с э.д.с. 2 В при	замыкании на внешне	ее сопротивление 4,8 Ом,
дает	силу тока 0,4 А.	
Определить внутреннее		
сопротивление аккумулятора и	напряжение на его	зажимах.

Преподаватель	В.В. Солодовников
---------------	-------------------

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №24 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова Группа СЭЗС-24,ЭЭМ-24, «05» ноября 2024 г. «06» ноября 2024 г. Председатель ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Строение атома. Опыты Резерфорда.
- 2. Сила магнитного взаимодействия. Магнитная проницаемость. Сила Ампера. Сила Лоренца.

Часть 2. Практическое задание

3.Определить энергию магнитного поля катушки, содержащей 120 витков, если при силе тока 7,5 А магнитный поток в ней равен 2,3 мВб.

Преподаватель	В.В. Солодовников
I	_

Рассмотрено на заседании цикловой комиссии «Горных дисциплин» протокол № 3 «05» ноября 2024 г. Председатель Н.А. Жук

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №25 ПО ОУД. 11 ФИЗИКА Группа СЭЗС-24,ЭЭМ-24, ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Семестр второй

УТВЕРЖДАЮ
Зам. директора по
учебной работе
О.В. Папанова
«06» ноября 2024 г.

Часть 1. Теоретическое задание

- 1. Энергия заряженного конденсатора. Объемная плотность энергии.
- 2. Характеристики магнитного поля.

Часть 2. Практическое задание

3. К генератору с Э.Д.С. 120 В и внутренним сопротивлением 3 Ом присоединили нагревательный прибор сопротивлением 21 Ом. Определить силу тока и напряжение в цепи.

Преподаватель		В.В. Солодовников
---------------	--	-------------------

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** пикловой комиссии БИЛЕТ №26 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3 ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24,ЭЭМ-24, «<u>06</u>» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Волновые свойства света. Интерференция, дифракция, поляризация.
- 2. Действующее значение силы тока, напряжения и э.д.с. в цепи переменного тока.

Часть 2. Практическое задание

3. Катушка с индуктивностью 35 мГн включается в сеть переменного тока. Определить индуктивное сопротивление катушки при частоте 60, 240 и 480 Гц

Преподаватель В	В.В. Солодовников
-----------------	-------------------

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании УТВЕРЖДАЮ БИЛЕТ №27 пикловой комиссии Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3 ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24,ЭЭМ-24, «<u>06</u>» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Электромагнитные волны. Свойства электромагнитных волн.
- 2. Дисперсия. Спектры. Виды спектров. Спектральный анализ. Приборы для получения спектров

Часть 2. Практическое задание

3.Ядра изотопа тория	²³² Th претерпевают о	- распад, д	цва β- расп	ада и и с	еще од	ин α-
распад. Какие ядра после эт	ого получаются?					

Преподаватель		В.В. Солодовников
---------------	--	-------------------

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** пикловой комиссии БИЛЕТ №28 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3 ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24,ЭЭМ-24, «<u>06</u>» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Волновые свойства света. Интерференция, дифракция, поляризация.
- 2. Действующее значение силы тока, напряжения и э.д.с. в цепи переменного тока.

Часть 2. Практическое задание

3. Катушка с индуктивностью 35 мГн включается в сеть переменного тока. Определить индуктивное сопротивление катушки при частоте 60, 240 и 480 Гц.

Преподаватель В.В. Солодовников

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №29 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24, ЭЭМ-24, «06» ноября 2024 г. Председатель ОПИ-24,ОПУТ-24, ОГР-24, ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Корпускулярно-волновой дуализм света.
- 2. Переменный ток. Принцип получения переменного тока.

Часть 2. Практическое задание

3. Какой длины электромагнитные волны излучает в вакууме колебательный контур с емкостью 2,6 п Φ и с индуктивностью 0,012 м Γ н, когда в нем происходят колебания с собственной частотой.

Преподаватель	 В.В. Солодовников

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** цикловой комиссии БИЛЕТ №30 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3ОУД. 11 ФИЗИКА О.В. Папанова. «<u>05</u>» <u>ноября 2</u>024 г. Группа СЭЗС-24, ЭЭМ-24, «06» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Энергия заряженного конденсатора. Объемная плотность энергии.
- 2. Внешний внутренний фотоэффект, законы фотоэффекта.

Часть 2. Практическое задание

3. К генератору с Э.Д.С. 120 В и внутренним сопротивлением 3 Ом присоединили нагревательный прибор сопротивлением 21 Ом. Определить силу тока и напряжение в цепи.

Преподаватель	В.В. Солодовников
---------------	-------------------

ЭКЗАМЕНАЦИОННЫЙ Рассмотрено на заседании **УТВЕРЖДАЮ** пикловой комиссии БИЛЕТ №31 Зам. директора по «Горных дисциплин» ПО учебной работе протокол № 3 ОУД. 11 ФИЗИКА О.В. Папанова «<u>05</u>» ноября 2024 г. Группа СЭЗС-24,ЭЭМ-24, «<u>06</u>» ноября 2024 г. ОПИ-24,ОПУТ-24, ОГР-24, Председатель ИС-24, 2ИС-24 Н.А. Жук Семестр второй

Часть 1. Теоретическое задание

- 1. Волны : продольные и поперечные. Звуковые волны. Ультразвук и его применение.
 - 2. Связь напряженности и вектора магнитной индукции.

Часть 2. Практическое задание

3. Определить энергию магнитного поля катушки, содержащей 120 витков, если при силе тока 7,5 А магнитный поток в ней равен 2,3 мВб.

Преподаватель	В.В. Солодовников
преподаватель	D.D. CONOGODIINKOD

Часть 1. Теоретическое задание

- 1. Гармонические колебания: свободные, вынужденные, затухающие.
- Превращение энергии при колебательном движении.
- 2. Закон Ома для участка цепи.

Часть 2. Практическое задание

3.Определить энергию магнитного поля катушки содержащей 120 витков, если при силе тока 7,5 А магнитный поток в ней равен 2,3 мВб.

Преподаватель	В.В. Солодовников
преподаватель	D.D. CUЛUДОВНИКОВ

ОТВЕТЫ:

1-Б 2-А 3-Б 11-440Ом 12-2Н 13-0,02с

4-Б

5-60км/ч

6-B

7-B

8-A

9-B

10-B

Приложение 2. Ключи к контрольно-оценочным средствам для текущего контроля

часть 1

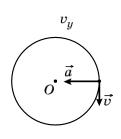
Ответы и решения Физика 10 класс

Механика

Тест 1 Кинематика

```
Вариант 1
             1. a) v_x = v_{0x} + a_x t;
               6) v = v_1 + v_2;
               v = v_{01} - a_1t + v_{02} + a_2t = (v_{01} + v_{02}) + (a_2 - a_1)t;
             v \approx 6.3 \text{ M/c.} a_{x}t^{2} a_{x}t^{2}
                     02
                                    В момент встречи x_1 = x_2.
              (a_2 - a_1) t^2 + 2 (v_{01} + v_{02}) t_1 + 2 (x_{01} - x_{02}) = 0.
               34
               При условии, что x_{01} = 0,
               t_{\rm B1,2} = (v_{01} + v_{02}) \pm (v_{01} + v_{02})^2 + 2x_{02}(a_2 - 1)
               Tak kak t_{B} > 0, to t_{B} = 20 c.
               x_1 = x_2 = 80 \text{ M}.
  2. a) v = v
```

$$t = \sqrt{\frac{2y_0}{g}}, \quad 0 \quad 0y \quad 2 \quad 0 \quad 2 \quad 0$$


6)
$$x = x_0 + v_0 x_t$$
; $x = v_0 t$; $x = 400$ M.

6)
$$x = x_0 + v_{0x}t$$
; $x = v_0t$; $x = 400$ M.
B) $v^2 = v^2 + v^2$; $v = \sqrt{v^2 + g^2}t^2$;

$$v = 94.3 \text{ M/c}.$$

$$v = 94.3 \text{ m/c.}$$

a. $a = v^2 = 2v^2$; $a = 16 \text{ m/c}^2$.

6)
$$v = {\displaystyle \frac{R}{\omega R}} = {\displaystyle \frac{d}{\omega d}}; \ \omega = {\displaystyle \frac{2v}{d}}; \ \omega = 40 \ \text{pag/c}.$$

B)
$$s = s \ N = \frac{s_1 t}{T} = \frac{s_1 t \omega}{2};$$
 $t = 47,1 \text{ c.}$

Вариант 2

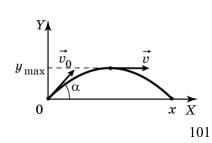
1. a)
$$v_x = v_{0x} + a_x t$$
; $v_1 = \vec{v}_2$
 $a_1 t$; $v_2 = a_2 t$; $v_1 = 16$

$$a_1\iota$$
, v_2 $a_2\iota$, v_1 10 $a_2\iota$

$$v_2 = 12 \text{ m/c}.$$
6) $v = v_1 + v_2;$

$$v = a_1t + a_2t = (a_2 + a_1) t;$$

$$= 28 \, \text{M/c}.$$


= 28 m/c.
$$(a-a)t^2$$

B) $x = x_0 + v_0 x_1^{p+2}$; $\Delta x = x - x$; $\Delta x = \frac{1}{2} \frac{21}{2}$;

 x_{2}

$$t_1 \sqrt{\frac{2\Delta x}{a_1 - a_2}}; \ t_1 = 50 \text{ c.}$$

2. a)
$$0 = v_0 \sin \alpha_1 - gt_1;$$

 $t = \frac{v_0 \sin \alpha_1}{t}; = 28.3 \text{ c.}$

6)
$$x_1 = 2v_0t_1 \cos \alpha_1$$
; $x_1 = 16006,5 \text{ M} \approx 16 \text{ kM}$;

$$y = \sin \alpha_1 \frac{gt_1^2}{2}; y = 3998,9 \text{ M} \approx 4 \text{ KM.}$$

m $v_0t_1 - \text{m}$
ax a 0 1

B)
$$x = 2v$$
 $\cos \alpha$; $t = \frac{x}{\sqrt{0} \sin \alpha_1}$; $= \frac{v^2 \sin 2\alpha}{\sqrt{2} \sin \alpha}$; $= \frac{v^2 \sin 2\alpha}{\sqrt{2} \sin \alpha}$; $= \frac{v^2 \sin 2\alpha}{\sqrt{2} \sin \alpha}$;

$$x_2 = 0$$
 g ; $\frac{1}{x_2} = \frac{1}{\sin 2\alpha_2} \frac{1}{x_2} = 1,15$. Дальность полета

снаряда уменьшится в 1,15 раза.

- **3. a)** $a = \frac{v^2}{R}$; a = 2 m/c².

 - 6) $\omega = \frac{V}{R}$; $\omega = 5 \text{ pag/c}$. B) N = vt; $\omega = 2\pi v$; $t = \frac{S}{2\pi v}$; $N = \frac{\omega S}{2\pi v}$;

a)
$$N = vt$$
; $\omega = 2\pi v$; $t = \frac{s}{v}$; $N = \frac{\omega s}{2\pi v}$

3

N = 32.

Тест 2 Основы динамики

Вариант 1

1. (5), 2.(3), 3.(4,5), 4.(0.44), 5.V=6450 m/c, T=6.44 c, 6.(2m/c2) Вариант 2

1.(8H), $2.(\kappa \Gamma M/c^2)$, 3.(55H), 4.(20M/c), 5.(123), 6.(0.02M/c)

Тест 3 Законы сохранения

Вариант 1

1. a)
$$m v = (m + m) v : \frac{m_1 v_1}{v} : v = 1,73 \text{ M/c}$$

$$E = \frac{(m_1 + m_2)v^2}{2}; E = 3$$
 Дж.

Вариант 1
1. a)
$$m v = (m + m) v$$
; $= \frac{m_1 v_1}{m_1 + m_2}$; $v = 1,73$ м/с.

1 1 1 $= \frac{1}{2}$ $= \frac{m_1 v_1}{m_1 + m_2}$; $v = 1,73$ м/с.

6) $E = \frac{(m_1 + m_2)v^2}{2}$; $E = 3$ Дж.

B) $E = (m_1 + m_2)gh = (m_1 + m_2)gl (1 - \cos \alpha)$; $\alpha = \frac{1}{2}$ $= \frac{1}$

2. a)
$$\eta = \frac{A_{\Pi} d_{\Pi} d_{\Pi}}{100\%} = \frac{ngh_{1}}{100\%} \frac{A_{\Pi} d_{\Pi}}{i} \frac{300 \pi}{i} \frac{300 \pi}{\eta} = 1 \cdot 1 \cdot \eta = 80\%.$$

B)
$$\eta = {}^{A} \frac{1}{100 \pi^{2}} \cdot 100\%; \qquad {}^{1} \frac{1}{e} \frac{1}{m} (g+a) h = {}^{N} \frac{1}{g} t \frac{1}{g+2h_{2}} h;$$

$$\frac{1}{2} \frac{1}{2} \left(\frac{100\pi}{g} \right)_{h} \cdot \frac{2}{h} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \cdot 100\%$$

$$= Nt; \eta = \frac{\left(\frac{1}{t^2} \right)_2}{100\%}; \quad \frac{m \left(g \frac{1}{t^2} \right)_2}{100\%};$$

$$= Nt; \eta = \frac{1}{2} \frac{1$$

3. a)
$$mg' + N'1 + N'2 = 0$$
.

Относительно точки O_2 :

 N_2 ≈ 8,34 кВт.

$$N_1 \cdot O_1O_2 - mg \cdot BO_2 = 0.$$

$$M_1 = \frac{mg \cdot BO_2}{O} = \frac{mg \cdot M}{O} \cdot \sqrt{\frac{AC}{2} \cdot \frac{1}{2}} \cdot \frac{1}{2} \cdot$$

в) Трубу можно считать приподнятой за правый конец, когда сила давления трубы на правую опору станет равной нулю. $\overrightarrow{N'}$

$$AC - AO_1$$

$$AC - AO_1$$
 m_1v_1 ; $v = 2$ m/c.

Вариант 2

1. a)
$$m v = (m + m) v$$
;

B)
$$\frac{m_2v^2}{kx^2 + 2\mu} + m^2 gx - (m + m) v^2 = 0;$$

 $(m_2 - 1 - 2 - 2 - 1 - 2)$

$$x_2 = \frac{-\mu(m_1 + m_2) g + \sqrt{\mu^2 g^2 (m_1 + m_2)^2 + k(m_1 + m_2)^2 + k($$

$$x = 0.048 \text{ M} = 4.8 \text{ cm}.$$

2. a)
$$\eta = {A \text{ пол } 1 \over A} \cdot 100\%;$$
 $A = {\eta_1 Nt \over A};$

$$A_{\text{ПОЛ}} = 103,6 \text{ кдж.}$$
 $b = m gh; m = A_{\text{ПОЛ}} = 80 \text{ кг.}$
 $A_{\text{ПОЛ}} = 1 = 103,6 \text{ кдж.}$
 $A_{\text{ПОЛ}} = m gh; m = A_{\text{ПОЛ}} = 1 = 80 \text{ кг.}$
 $A_{\text{ПОЛ}} = 1 = 103,6 \text{ кдж.}$
 $B_{\text{ПОЛ}} = 1 = 103,6 \text{ kдж.}$
 $B_{\text{ПОЛ}} = 1 = 103,6 \text{ kgr.}$
 $B_{\text{ПОЛ}} = 1 = 103,6 \text{ kgr.}$

$$A = Nt; \quad \eta_{2} = \frac{m_{2} \left| g + \frac{2h}{h} \right| h \cdot 100\%}{N}; \quad \eta_{2} = \frac{m_{2} \left| g + \frac{2h}{h} \right| h \cdot 100\%}{N}; \quad \eta_{3} = 91\%.$$

3. а)
$$m_1g + m_2g + N_1 + N_2 = 0$$
. Относительно точки O_1 :
$$-m_1g \cdot O_1A - m_2g \cdot O_1B + N_2 \cdot O_2$$

$$= 0.$$

105

6)
$$= \frac{m_1g \cdot O_1A + m_2 g \cdot O_1B}{O_1B} = \frac{O_1O_2}{O_1O_2} + m_2 g \cdot O_1B = 2,5 \text{ kH}.$$

в) Балку можно считать припод- нятой за левый конец, когда сила давления балки на левую опору станет равной нулю.

 $\begin{array}{c|c}
 & \overrightarrow{F} & \overrightarrow{N_2} \\
\hline
O_1 & \overrightarrow{M_1 g} & \overrightarrow{O_2}
\end{array}$

Относительно точки
$$O_2$$
:

$$-m_1g \cdot AO_2 - m_2g \cdot BO_2 + F \cdot O_1O_2$$

= 0:

$$F = \frac{m_1 g \frac{O_1}{O_2} + m_2 g \cdot (O_1 O_2 - \frac{O_2}{O_1 B})}{O_1 O_2} + F_1 = 2 \text{ kH}.$$

106

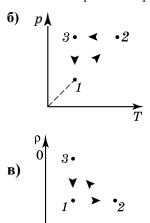
Молекулярная физика

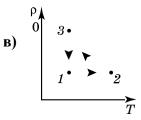
Тест 4 Основы МКТ

Вариант 1. a)
$$m_0$$
 = $\frac{M}{N_A}$; m_0

$$= 1,79 \cdot 10^{-25} \text{ K}\text{G}.$$

6) Скорости атомов серебра в пучке, вышедшем из щели во внутреннем цилиндре, разные: скорости одних больше, дру- гих меньше, но большинство атомов имеет скорость, близ- кую по своему значению к средней квадратичной скорости. **в)** $v = \frac{2\pi n(R_2 - R_1)}{r} \frac{R_2}{r}$; v = 522 м/с.


S


2. a)
$$pV = {}^{m_1RT_1}; = {}^{m_1RT_1}; = 4.3 \cdot 10^{-3} \text{ M}^3.$$

V

B)
$$N = \frac{nvst}{n}$$
; $n = \frac{p2}{m}$; $\sqrt{\frac{v=}{M}} = \frac{3RT_2}{2}$; $\sqrt{\frac{N_A}{12kMT}}N = p \ st$;

- **3. a)** 1-2 изохорное нагревание; 2-3 — изобарное сжатие (охлаждение);
 - 3—1 изотермическое расширение.

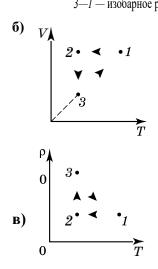
108

0

1. а) Частицы гуммигута движутся в результате неском- пенсированности ударов по ним молекул жидкости, в которой эти частицы взвешены. Чем крупнее частица, тем в большей мере взаимно компенсируются силы уда- ров молекул жидкости, действующие на нее с разных сторон.

6)
$$N = m_{0p} N_{A}$$
; $N = 1.6 \cdot 10^{7}$.
 vN_{A}
B) $E = \frac{3kT}{2}$; $E = \frac{m_{B}v^{2}}{M}$; $v = \sqrt{\frac{3kT}{v_{0p}}}$; $\frac{v_{B}}{v_{0p}} = \sqrt{\frac{m_{6p}N_{A}}{M}}$; $\frac{m_{6p}N_{A}}{M} = \sqrt{\frac{m_{6p}N_{A}}{M}}$.

$$\frac{v_{\text{B}}}{v_{\text{0}}}$$
 = 1,7 · 10⁴. Скорость молекул воды в 1,7 · 10⁴ раз


2. a)
$$pV = {m_1RT \atop m_1RT}; \atop p = {m_1RT \atop m_1}; p = 2 \cdot 10^5 \text{ Па.}$$

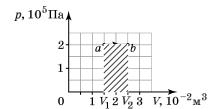
6)
$$p = p$$
 $1^{+} p$; $p = p + \frac{m_2 RT}{M_2 V}$; $p = 3,25 \cdot 10^5 \text{ Ha.}$
B) $pV = \frac{(m_1 + m_2)}{M} RT$
9 $\frac{p \cdot V = (m_1 + m_2 - \Delta m)}{M} R (T - \Delta T)}$; $\frac{\Delta m}{(m_1 + m_2)} = 1$ $\frac{p_0 T}{p(T - m_2)}$; $\frac{\Delta m}{(m_1 + m_2)} = 0,68$.

3. а) *1*—2 — изохорное охлаждение;

2-3 — изотермическое сжатие;

3—1 — изобарное расширение (нагревание).

Термодинамика


Тест 5

Вариант 1

1. a)
$$A' = p (V_2 - V_1);$$

 $A' = 2 \kappa \text{Дж}.$

Работа газа при расшире- нии численно равна площа- ди прямоугольника V_1abV_2 , ограниченного графиком $p=\mathbf{const}$, осью V и отрезка- ми V_1a и bV_2 .

6)
$$Q = \Delta U + A'; Q = 3 \text{ kJ}$$
ж.
B) $Q = c \ m\Delta T; \Delta T = \frac{C}{C}; c$

$$p = 1 \cdot 10^3 \, \text{Дж/моль} \cdot \text{K};$$
 $p c_{pm} p$

 $\Delta T = 100 \text{ K}.$

2. a)
$$Q_1 = \lambda m_{\pi} + c_{B} (m_{\pi} + m_{B}) \Delta T +$$

$$c_a m_a \Delta T$$
; $Q_1 = 303.9 \cdot 10^3$ Дж.

(a)
$$Q_1 = km_1 + c_8 (m_1 + m_8) \Delta T$$

 $c_3 m_3 \Delta T$; $Q_1 = 303.9 \cdot 10^3 \text{ Дж.}$
(b) $P = \frac{Q_1}{t_1}$; $P = 506.5 \text{ Дж/c}$; $\frac{Q - Q}{Q} = \frac{P - R}{P} = 0.37$.

B)
$$Q2 = rm_{\Pi}$$
; $= Pt$; $\frac{m_{\Pi}}{1 \cdot 2 \cdot m_{\Pi}} = \frac{P1t2}{r(m_{\Pi} + m_{B})} = 0.45$.

3. a)
$$\eta = \frac{A' \cdot 100(\%)}{Q_1}$$
; $\eta = 50 (\%)$.

6)
$$n_{\overline{2}} = \frac{(T_1 - T_2) \cdot 100(\%)}{T_1 \cdot T_1}; \frac{T}{100(\%) - \eta} = 580 \text{ K.}$$

$$\mathbf{B}$$
) = qm ; $q=0$ 1; $q=41,7\cdot 10^6$ Дж/кг. Дизельное топ- Q 1

ЛИВО.

Вариант 2

1. a)
$$A' = A_{12} + A_{23}; A'_{12} = 0$$
, tak kak $V_{1} = V_{2}; A'_{23} = p(V_{3} - V_{2}); A' = 6 \cdot 10^{3} \text{ Дж.}$

б)
$$\Delta U = Q - A';$$
 $\Delta U = 2 \cdot 10^3$ Дж. Так как $\Delta U > 0$, то внутренняя энергия газа увеличилась.

внутренняя энергия газа увеличилась.
в)
$$\Delta U = \frac{3\nu R\Delta T}{2}$$
; $\Delta T = 200$ K. Так как $\Delta T > 0$,

3vR

то температура газа увеличилась

2. a)
$$Q = m [c_B (T_1 - T_3) + \lambda + c_{\pi} (T_3 - T_2)]; T_3 = 273 \text{ K};$$

$$Q = 84.9 \cdot 103 \text{Дж.}$$

$$\eta = \frac{Q \cdot 100(\%)}{14.15 \cdot 10^3} \text{Дж.}$$

$$Pt \qquad \eta P$$

$$\mathbf{B}) \ Q' = Q + Pt; \ Q' = 933.9 \text{ кДж.}$$

$$\mathbf{3.} \qquad \eta = \frac{(T_1 - T_2) \cdot 100(\%)}{100(\%)}$$

$$\mathbf{a}) \qquad 100(\%)$$

в)
$$Q' = Q + Pt$$
; $Q' = 933.9 \text{ кДж.}$ 3. $\eta = (T_1 - T_2) \cdot 100(\%)_{112}$

$$\frac{T}{1}$$

$$Q_1 - Q_2) \cdot 100(\%) = A' \cdot \frac{A'}{1}$$

$$Q_1 \qquad A' = \frac{\eta Q_2}{100(\%) - \eta}$$

$$A' = 844 \text{ Дж.}$$

$$B) \quad q = 29300 \text{ кДж/кг}; \qquad = qm; \quad m = \frac{A + Q_2}{q};$$

$$Q_1 \qquad m = 8 \cdot 10^{-5} \text{ кг.}$$

Агрегатные состояния вещества и фазовые переходы

Тест 6 Вариант 1

1.(а.920 Па,б.0.0069г, в.0.346кг.), 2. Шар, сделанный из монокристалла, при нагревании действительно изменяет не только объем, но и форму. Это связано с несколькими физическими процессами, которые происходят в материале

при повышении температуры.

Во-первых, давайте рассмотрим, что такое монокристалл.

Это материал, в котором атомы организованы в регулярную, повторяющуюся структуру. Когда мы нагреваем такой шар, температура повышается, и атомы начинают двигаться

быстрее. Это движение приводит к тому, что

кристаллическая решетка расширяется, что вызывает увеличение объема. Этот процесс называется тепловым расширением.

Во-вторых, изменение формы может происходить из-за неравномерного распределения температуры внутри шара.

Если одна часть шара нагревается быстрее, чем другая, это может создать внутренние напряжения.

Эти напряжения могут привести к деформациям, что, в свою очередь, изменит форму шара. Например, если одна сторона нагревается сильнее, она может расширяться больше, чем другая сторона, что приведет к искривлению или изменению формы.

Кроме того, если в монокристалле есть какие-либо

дефекты или асимметрии в его структуре, это также может способствовать изменению формы при нагревании. Дефекты могут вызывать локальные изменения в механических

свойствах материала, что может привести к тому, что

некоторые участки будут деформироваться больше,

чем другие.

Таким образом, при нагревании монокристаллического

шара мы наблюдаем как увеличение объема, так и

возможные изменения формы, вызванные внутренними напряжениями и асимметрией структуры. Это важные

аспекты, которые следует учитывать при работе с

материалами в различных температурных режимах.

Вариант 2

1.(а. 1.01Па, б. 0.0069гр.в.25.2 гр)

2.

стекло - аморфное, соль - кристаллическая

Для аморфных тел нет температуры плавления

Медь - кристаллическая как и соль

Электродинамика. Тест 7 Электростатика

$$x = \frac{r\sqrt{|q|}}{\sqrt{|q_1|} + \sqrt{|q_2|}}; \quad x = 3.87 \cdot 10^{-2} \text{ M.}$$

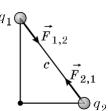
B)
$$E = E \cdot 1 + E \cdot 2$$
; $E = 0$; $\varphi = \varphi \cdot \overrightarrow{E_2} \cdot \overrightarrow{E_1}$ $\varphi = \varphi \cdot \overrightarrow{E_2} \cdot \overrightarrow{E_1}$ $\varphi = \varphi \cdot \overrightarrow{E_2} \cdot \overrightarrow{E_1}$

2. a)
$$U = Ed$$
; $U = 60$ B.

a)
$$U = Ed; \ U = 60 \text{ B.}$$
6) $A = q Ed = q \ U; \ A$

$$1 \quad 1 \quad 1 = \frac{m_1 v^2}{2}; \quad v = \sqrt{\frac{2q_1 U}{m_1}};$$

$$v_1 = 1,07 \cdot 10^5 \text{ M/c.}$$
51 $\sqrt{2}$


в)
$$v_1$$
 q_1m_2 v_1 2. Скорость α -частицы в v_2 v_2 v_2 v_3 v_4 v_2

меньше скорости протона.

3. a)
$$C = \frac{q}{U}$$
; $q = CU$; $q = 5 \cdot 10^{-5}$ KJ.

б)
$$W = \frac{qU}{q^2} - \frac{CU^2}{2}$$
; $W = 2.5$ мДж.

B)
$$1 = W_2$$
; $= q : \frac{1}{2} = \frac{1}{C_1} : C = \frac{\varepsilon \varepsilon}{d} : \frac{S}{d}$; $W = q_1$ $\varepsilon = \frac{\varepsilon 1 d_2}{d} = 2\varepsilon :$

Вариант 2

B)
$$\varphi = \varphi + \varphi$$
; $\varphi = k \left(\begin{array}{c} q_1 \\ \downarrow a \end{array} \right)$; $\varphi = 0$.

2. a)
$$N = \frac{g}{e}$$
; $N = 2 \cdot 10^{10}$.

6)
$$mg' + F = 0; mg = qE; m = q\frac{E_1}{g};$$

m = 12.8 MKG.

B)
$$mg' + F_2 = ma'; -mg + qE_2 = ma;$$
 $a = \frac{2qE_1 - mg}{m}; a = g = 10 \text{ m/c}^2.$

3. a)
$$C = \frac{q}{U}$$
; $C_1 = 3 \cdot 10^{-9} \Phi$.

б)
$$W = \frac{qU}{q_2^2} - \frac{CU^2}{2}$$
; = 21,6 мкДж.
= $C = \frac{1}{2}$
в) $2 = \frac{2W}{1}$; $U_1 = U_2$; $C = \frac{\varepsilon \varepsilon_0 S}{d}$;

$$\frac{W}{1} = 2$$
; $\frac{d_2}{d_2} = 1$. Расстояние между пла-

d2 d1 d1 2

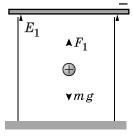
конденсатора уменьшить в 2 раза.

необходимо

Электродинамика

Тест 8

Постоянный электрический ток


Вариант 1

1. a)
$$I = \frac{U}{R_1}$$
; $R = \frac{\rho l_1}{S_1}$; $I = \frac{US_1}{\rho l_1}$; $I = 0.7$ A.

6)
$$I = env S$$
; $v = \frac{I}{}$; $= 0.103 \cdot 10^{-3} \text{ m/c}.$

B)
$$I = env_1^S$$
; $I = env_2^S$; I

2.
$${}^{2}_{a}$$
 ${}^{0}_{I}$ ${}^{0}_{I}$

1 2 7 1 2 3

E ;
$$I = 1,2 \text{ A.}_{1}$$
 $R = 1$ $R_{1} + R_{2} = 3 + r$ B) $= I^{2} r$; $= 1,44 \text{ Bt.}$ P_{r} P P

3. a) $A_{1} = UIt_{1}$; $A_{1} = 304 \text{ p.bs.}$; $A_{1} = 300 \text{ p.bs.}$ $A_{1} = 300 \text{ p.bs.}$

 A_1

mg · 100(%)

B)
$$mg \cdot + F \cdot + F \cdot A = 0$$
.

 $\Pi o \text{ och } OY: -mg + F + F_A = 0$;

 $F = mg - F : F = \rho \text{ gV} = \frac{\rho_B}{\rho_B} gm$;

 $A = Fh \quad A = \frac{A}{\rho_B} \quad A^{B} \quad$

ческие затраты уменьшатся в 1,67 раза.

Вариант =
$$\frac{\rho l 1}{l}$$
; $S = \frac{\pi d^2}{l}$; $R = \frac{4\rho l}{l}$ 1; $R = 15,3$ Ом.

1. a)

6)
$$I = \frac{U}{U}$$
; $I = q^4$; $U = \frac{1}{q}R \pi d^2 = 1$; $U = 51 \text{ B}$.

1. $R_1 = \frac{U}{t}$; $U = \frac{1}{q}R \pi d^2 = 1$; $U = 51 \text{ B}$.

1. $R_1 = \frac{U}{t}$; $U = \frac{1}{q}R \pi d^2 = 1$; $U = \frac{1}{q}R \pi d^2 =$

6)
$$I4 = \frac{1}{1 + R} = \frac{1}{4}$$
; $I = 1 \text{ A.}$
B) $P = I^2 = \frac{1}{2} \frac{R_4 + r}{A_1}$; $P = 5 \text{ Bt.}$
3. a) $= \frac{U^2 t}{R_1}$; $Q = 387.2 \text{ k/J/k}$.
Q1
6) $\eta = \frac{1}{2} \frac{1}{Cm(t^{0-1})} \cdot 100(\%)$; $\eta = 86.6\%$.
 $U = \frac{1}{2} \frac{1}{U^2 t} \cdot 100(\%)$; $u = 86.6\%$.
 $u = \frac{1}{2} \frac{1}{U^2 t} \cdot 100(\%)$; $u = 86.6\%$.

Тест 9 Электрический ток в различных средах Вариант 1

 а) Сопротивление стального проводника увеличивается, так как с повышением температуры усиливаются беспоря— дочные колебания ионов в узлах кристаллической решетки и электроны проводимости в процессе дрейфа чаще сталки— ваются с ионами. Длина свободного пробега электронов уменьшается, а удельное сопротивление возрастает.

б)
$$R = R (1 + \alpha \Delta T); \Delta T = \frac{R - R_0}{\alpha R_0}; T = \frac{T + R - R_0}{\alpha R_0}; T = 306 \text{ K.}$$
в) $U = \text{const}; P = \frac{U^2}{R}; \frac{\Delta P}{P_0} = \frac{R_0}{R} - 1; \frac{\Delta P}{P_0} = -0,167,$ или

 nU^{2}

-16,7%. Уменьшается на 16,7%.

2. а) Нагревание газа или облучение ультрафиолетовым, рентгеновским либо другим излучением вызывает иони- зацию атомов или молекул газа, и газ становится про- водником электричества.

6)
$$I = \frac{q}{2N_1} S q = eN; \quad N = \frac{2N_1V}{V_1} = \frac{2eN_1Sd}{V_1}; \quad H = \frac{2eN_1Sd}{V_1};$$

$$I_{\rm H} = 2 \cdot 10^{-10} \, \text{A}.$$

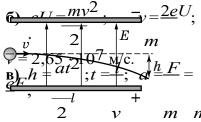
B)
$$A_i = eEl = \underbrace{eU}_{I.}$$
 $U = \underbrace{\frac{A_i d}{el}}_{I}$; $U = 1500$ B.

3. a)
$$m = kIt$$
; $m = 3.24$ г.

(a)
$$m - kH$$
; $m - 5.24$ f.
(b) $m = \rho V = \rho h S$; $S = \frac{m}{\rho h}$; $S = 90 \text{ cm}^2$.
(a) $N = \frac{mN_A}{M}$; $n = \frac{N}{M} = \frac{mN_A}{M}$; $n = 4.17 \cdot 10^{-20} \cdot \frac{m^2}{M}$.

Вариант 2

1. а) При увеличении температуры сопротивление полу- проводникового термистора уменьшилось, так как уве- личилось число электронов проводимости, следователь- но, и число дырок.


6)
$$U = U_{T} + U_{p}$$
; $U = I_{1} (R_{T1} + R_{p})$; $Q = I_{T} (R_{T1} + R_{p})$

B)
$$R = \frac{U}{I} - R$$
; $\frac{R_T}{R_T} = \frac{I_2 (U - I_1 R_p)}{I_1 (U - I_2)}$; $\frac{R_T R_T}{R_T} = 3,86$. Compoted $\frac{I_2}{I_2} = \frac{I_2 (U - I_1 R_p)}{I_1 (U - I_2)}$; $\frac{R_T R_T}{R_T} = 3,86$.

ление термистора уменьшилось в 3,86 раза.

Проводимость межэлектродно го промежутка в ваку— умной трубке получают введением источника заряжен— ных частиц — металлического электрода, который испускает электроны	пр и наг рев ан ии до вы сок ой тем пер ату ры (яв лен ие
--	---

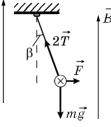
термоэлектронной эмиссии). К этому электроду подключают отрицательный полюс источника тока, к другому впаянному электроду — по- ложительный полюс. Электрическое поле, созданное ме- жду электродами, приводит электроны в направленное движение.

$$h = \frac{eEl^{2}}{3,38}; h = -cm(t^{0} - t^{0}); \frac{m_{\Pi}}{m} = 0,03.$$

$$10^{-3} \text{ M.} \qquad R \qquad 2 \qquad 1 \qquad 2; \frac{m}{m} = 0,03.$$
3. a) $m = kIt; m \qquad mrR_{2} \qquad 52$

$$= 4,03 \text{ r.} \qquad 120$$
6) $m = \rho V = \rho hS; \qquad h = \frac{\rho S}{m}; h = 0,04 \text{ MM.}$
Prof($\sqrt[6]{6}$); $W \qquad U = \frac{\eta W}{It \cdot 100}; U = 20 \text{ B.}$

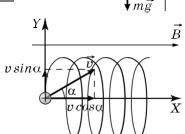
1. а) Отталкиваются.


6) На каждый элемент Δl проводника 2 действует маг- нитное поле проводника l с силой $F = I_2 B_1 \Delta l$. Направле-

ние вектора магнитной индукции B 1 магнитного поля, созданного проводником l, определяем по правилу пра-вого винта, а направление силы

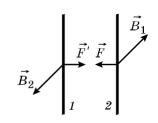
 F^{\cdot} — по правилу левой руки. На \mathfrak{p} - кой же элемент Δl проводника l действует сила $F'=I_2B_2\Delta l$, равная по числовому значению и противо-положная по направлению силе F^{\cdot} .

- в) Объемный электрический заряд в проводнике с элек- трическим током равен нулю, так как число электронов и число положительных ионов одинаково. Электриче- ское отталкивание отсутствует.
- 2. a) $F = BI\Delta l \sin \alpha$; $\alpha = 90^{\circ}$; F = 18 mH.


 - 6) $tg\beta = \frac{F}{mg}$; $tg\beta = 10^{\circ}12'$. B) $2T = \frac{F}{\sin\beta}$; $T = \frac{F}{2\sin\beta}$; T = 50.8 MH.
- 3. a) $F = \underbrace{evB}_{2\pi R} \sin \alpha; F = 1.6 \cdot 10^{-17}_{10\pi \Omega}$ b. 6) $T = \underbrace{2\pi R}_{2\pi R} ; evB \sin \alpha = m(v \sin \alpha)$;

$$R = \frac{v \sin \alpha}{eB}; \quad T = \frac{2\pi m}{eB};$$

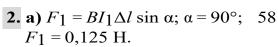
$$T = 3.28 \cdot 10^{-6} \text{ c.}$$


B)
$$x = Nx_1 = NvT \cos \alpha;$$
 $x = 28.4 \text{ cm}.$

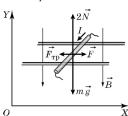
Вариант 2

- 1. а) Притягиваются.
 - **б)** На каждый элемент Δl проводни-

ка 2 действует магнитное поле про- водника I с силой F = $I_2B_1\Delta l$. На- правление вектора магнитной ин- дукции магнитного поля, созданного



проводником l, определяем по правилу правого винта, а


направление силы F — по правилу левой руки. На такой же элемент ΔI проводника I действует сила F' $=I_{1}B_{2}\Delta l$, рав- ная по числовому значению и противоположная по направ-

лению силе F.

в) Электрическое отталки- вание одноименных зарядов в электронных пучках зна- чительно превышает их маг- нитное притяжение.

6)
$$mg^{\cdot} + 2N^{\cdot} + F_1 + F_{Tp}^{\cdot} = 0.$$
 122

По оси
$$OX$$
: $F_1 - F_{Tp} = 0$; по оси OY : $-mg + 2N = 0$;

$$F_{\text{TP}} = \mu mg$$
; $\mu = \frac{F_{1}}{mg}$; $\mu = 0,1$.

B)
$$mg' + 2N' + F'2 +$$

$$F_{Tp} = n \dot{q}$$
По оси $OX: F_2 -$

 $F_{\text{Tp}} = ma;$

в 2 раза.

по оси
$$OY$$
: $-mg + 2N = 0$;

По оси
$$OY$$
: $-mg + 2N = 0$; $a = \frac{2F1 - \mu mg}{m}$; $a = 1 \text{ m/c}^2$.

$$a = \frac{1}{m}$$
; $a = 1$ m/c².
3. a) $F = evB \sin \alpha$; $\alpha = 90^{\circ}$; $\alpha = \frac{mv^2}{R_1}$;

$$R_1 = \frac{mv}{eR_1}$$
; $R_1 = 5.7 \cdot 10^{-4} \text{ M}.$

6)
$$v = \frac{1}{1} = \frac{v}{2\pi R_1}$$
; $v = 2.8 \cdot 10^8$ Γιι.

1
 $_{T}$ $^{2\pi R_{1}}$ 1

в)
$$\frac{1}{v_2} = \frac{R_1}{R_2} = \frac{B_2}{B_1}$$
; $\frac{v_2}{v_1} = 2$. Частота обращения увеличится

124

X

Электродинамика (продолжение)

Tect 11. Электромагнитная индукция

Вариант 1

1. a)
$$\Delta \Phi = (B_2 - B_1) S \cos \alpha; \quad \alpha = 0^{\circ}; \cos 0^{\circ} = 1;$$

$$COS O = 1;$$

$$E = 7.5 \text{ B}.$$

$$E =$$

$$I_2 - I_1$$

б)
$$\Delta W_{\rm M} = -0.15$$
 Дж. Энергия магнитно-

го поля уменьшилась.

B)
$$Q = -\Delta W_{M}$$
; $Q = \frac{E^{2} \Delta R}{R}$; $R = \frac{E^{2} \Delta R}{\Delta W_{M}} R = 3.3 \cdot 10^{-2} \text{ Om}$ 54

B)
$$Q = -\Delta W_{M}$$
; $Q = \frac{E^{2} \Delta t}{R}$; $R = \frac{E^{2} \Delta t}{\Delta W_{M}} R = 3.3 \cdot 10^{-2} \text{ Om}$ 54

3. a) $\Delta \varphi = E_{i}$; $\frac{1}{V_{i}} = BV_{i} \sin \alpha$; $B = \frac{E_{i}1}{1}$

6)
$$I = \frac{E_i 2}{R} = \frac{Bvl \sin\alpha_2}{R}$$
; $\alpha_2 = 90^\circ$; $\sin 90^\circ = 1$; $I = 8 \text{ MA}$.
B) $q = It$; $t = \frac{S}{V}$; $q = \frac{Is}{V}$; $q = 2 \text{ MKJ}$.

в)
$$q = It; t = \frac{S}{S}; q = IS; q = 2 \text{ мКл}$$

Вариан
$$= -\Delta \Phi_1 N;$$

$$E_i 1\Delta t$$
, $= -4 \cdot 10^{-5}$ B6. Mar-

$$\begin{array}{ccc}
i1 & & \Delta\Phi_1 = \overline{N} & 1 \\
t & \Delta
\end{array}$$

нитный поток уменьшился.

$$\begin{array}{lll} \textbf{6)} & = & -B_1) \, S \cos \alpha; & -B & = \frac{\Delta \Phi_1}{S \overline{\cos} \alpha}; \\ \Delta \Phi_1 & (B_2 & B_2 & 1 & 1 \end{array}$$

$$B_1 = -\frac{\Delta\Phi_1}{S\cos};$$
 $\alpha = 0^\circ;$ $\cos 0^\circ = 1;$ $\alpha = 110 \text{ мTл.}$

$$B_2$$
 α

$$E_{i2} = B_2 - B_3$$

$$B_{1}$$
 S_{1} S_{2} S_{3} S_{6} S_{7} $S_{$

2. a) E
$$= \frac{E_{II}}{I} = \frac{DZ}{I} = \frac{\Delta I}{\Delta I}$$
; $\Delta I = -4 \text{ A. } 3\text{H}$

$$iS \qquad \Delta \qquad = -$$

указывает на то, что сила тока уменьшилась.
$$LI^2 \qquad LI^2 \qquad (I + \Delta I)^2 \qquad \qquad (I + \Delta I)^2 \quad \underline{\qquad}$$

Энергия магнитного поля уменьшилась в 25 раз.

в)
$$Q = W_{M2} = \frac{24W}{M1} = \frac{12L}{25}$$
; $Q = 6$ Дж.

$$W_{M1} = 56$$
3. a) E = $Bv l \sin \alpha$; $v = E$; $v = 2.5$ m/c.
 $i1 \quad 1 \quad 1 \quad 1 \quad Bl \sin \alpha_1 \quad 1$

$$i$$
1 1 1 l_1 $Bl \sin \alpha_1$ 1

6)
$$E_{i2} = Bv_2l \sin \alpha_2$$
; $\alpha_2 = 90^\circ$; $\sin 90^\circ = 1$; $v_2 = 2v_1$;

$$E_{i2} = 1,4 \text{ B.}$$

в) $q = It; I = \frac{E_{i2}}{R}; R = \frac{\rho I}{s}; q = \frac{E_{i2} st}{\rho I}; q = 41,67 \text{ Кл.}$

Тест 12 Механические колебания и волны

1. a)
$$T = \frac{t}{N}$$
; $T = 0.2$ c; $v = \frac{N}{t} = \frac{1}{T}$; $v = 5$ Гц.

$$\mathbf{6}) x = \cos \frac{2\pi t}{T}$$

 x_{max}

 $= x_{\text{max}} \cos 2\pi vt;$

$$x = 0.04 \cos 10\pi t$$
.

$$x = 0.04 \cos 10\pi t.$$

$$x = 0.04 \cos 10\pi t.$$

$$\sin 10\pi t = 0.02$$

$$\cos 2 \cos 10\pi t.$$

$$\cos 2 \cos 1$$

 $v_{\text{max}} = 0.4\pi \text{ M/c} = 1.256 \text{ M/c};$ -0.02

$$a = -4\pi^2 \cos 10\pi t =$$

$$=4\pi^2\cos{(10\pi t + \pi)};$$

 x, \mathbf{M} 0,04-0.04

$$a_{\text{max}} = 4\pi^2 \text{ M/s}_{\text{ex}}^2 = 39.4 \text{ M/c}^2.$$

2. a)
$$E = E_p = \frac{max}{2}$$
;

max

$$E = 6.25 \cdot 10^{-2}$$
 Дж.

$$E = 6.25 \cdot 10^{-2} \text{ M/s}.$$

$$6) E = E = \frac{\text{max}}{2^{V}} \text{ max}$$

$$k \max 2^{V} \text{ max}$$

$$\frac{2}{E}; \quad V = 0.5 \text{ m/c}.$$

$$max \quad mv^{2}$$

$$\frac{2}{E}$$
; $v = 0.5 \text{ M/c}$.

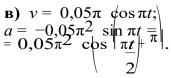
в)
$$E = E_k E_k E_k = 2E$$
; $E = \lim_{k \to \infty} \frac{1}{2}$; $E = \lim_{k \to \infty} \frac{$

3. a)
$$\lambda = v T$$
; $v = \frac{\lambda 1}{1}$; $v = 1450$ m/c.

6) При переходе звуковой волны из одной среды в дру- гую период колебаний частиц в волне не

поэтому
$$\frac{\lambda_2}{\lambda_1} = \frac{v_2}{v_1}; \frac{\lambda_2}{\lambda_1} = \underbrace{0,23}; \lambda = 4,4\lambda$$
. Длина звуковой

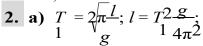
волны при переходе ее из воды в воздух уменьшится в 4,4 раза.

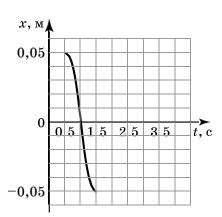

$$\mathbf{B}) \quad \underline{\Delta \varphi v_2 T}$$

$$s = 2\pi$$
; $s = 0.33$ m.

Вариант 2

1. a)
$$x = \sin \frac{2\pi t}{T} x \sin 2\pi vt$$
; = 0,05 m; $T = 2 c$; x_{max} m x_{max} a x_{max}


6)
$$\varphi = \pi t = \frac{\pi}{2} \text{ рад}; \quad t = 0.5 \text{ c.}$$



B момент времени t = 0.5 с

$$v = 0.05\pi \cos_2^{\pi} = 0;$$

 $a = -0.05\pi^2 \sin_2^{\pi} =$

 $=-0.49 \text{ m/c}^2$.

6)
$$T = 2\pi \sqrt{\frac{l}{g-a}}; a = g - \frac{4\pi^2 l}{\frac{2}{2}}; a \approx 1,66 \text{ m/c}^2.$$

в) Период колебаний пружинного маятника не изме-

нится, так как
$$T = 2\pi$$
 $\sqrt{\frac{m}{k}}$.

3. а) $\lambda = v T = v1$; $= 0,5$ м.

3. a)
$$\lambda = v T = v1$$
; $= 0.5$ M.

нзменяется, поэтому
$$\lambda_2 = v_2$$
; $v = v_1 \lambda_2$; $v = 1326$ м/с. $\lambda_1 v_1 = 2 \frac{v}{\lambda_1} \frac{v}{2}$ в) $\Delta \phi = \frac{2\pi v_s}{v_2}$; $\Delta \phi = \pi$ рад.

Тест 13 Электромагнитные колебания и волны

Вариант 1

1. a)
$$T_1 = \sqrt[2]{\pi} LC_1$$
; $T_1 = 1,4$ MKC.

6)
$$\lambda_1 = cT_1$$
; $\lambda_1 = 420 \text{ M}$. C B) $\lambda = 2\pi c LC$;

денсатора необходимо уменьшить на 490 пФ.

2. a)
$$I = \frac{U}{2\pi v_1 L}$$
; $v_1 = \frac{U}{2\pi LI}$; $v_1 = 400 \, \Gamma \text{H}$.

6)
$$2\pi v L = \frac{1}{2\pi v_1 C}$$
; $C = \frac{1}{4\pi^2 v^2}$; $C = 3,2$ мκΦ.
B) $v = \frac{1}{2\pi v_1 C}$; $v = 563$ ΓII.

3. a)
$$U_1^{2} = V_1^{7} = U_1 = U_1 = U_2$$
; = 38 B.

6)
$$U_{\rm H} = U_2 - I_2 R_2; U_{\rm H} = 35$$

B. B.
$$\eta = U_{\rm H} I_2 \cdot 100(\%) \dot{U}_1 = I_2$$

$$\vdots \qquad I = \frac{I_1 U_1}{I_2}; \quad \eta = \frac{U_{\rm H} \cdot 100(\%)}{I_1}; \quad \eta = \frac{U_{\rm H} \cdot 100$$

;
$$\frac{I}{U_1I_1}$$
 $\frac{I}{U_2}$ $\frac{I}{U_2}$ 2 U_2 I 1

Рариант 2
1. a)
$$c = \lambda v$$
; $v = \frac{c}{}$; $v = 1 \text{ M}\Gamma_{\text{II}}$.

6)
$$v_1 = \frac{1}{2\pi\sqrt{L_1C}};$$
 $L_1 = \frac{1}{4\pi^2v};$ $L_2 = 5$ ΜΚΓΗ.

B)
$$\lambda = 2\pi\sqrt{L}C; \quad \frac{1}{2} = \sqrt{\frac{L_2}{L_1}}; \quad L_2 = \frac{L_1^2}{\lambda_2^2};$$

$$\Delta L = L - L = L \begin{vmatrix} 1 \\ 2 \\ 1 \end{vmatrix} = 1$$
; $\Delta L = 15$ мкГн. Индуктивность

контура необходимо увеличить на 15 мкГн.

2. a)
$$I_1 = 2\pi v C U$$
; $L = \frac{I_1 = 0.28 \text{ A.}}{1 2\pi v_1 C}$; $L = \frac{I_1 = 0.28 \text{ A.}}{4\pi^2 v^2 C}$; $L = 2.53 \text{ Гн.}$

B) $v_2 = \frac{1}{2\pi \sqrt{2L}}$; $v_2 = 35.4 \text{ Гн.}$

3. a)
$$U_1 = I_2$$
; I

$$= \frac{I_{1}U_{1}}{U_{2}}; \quad I = 0,2 \text{ A.}$$

$$U_{2} \quad U_{2} \quad 2$$

$$I$$

$$0) \quad \eta = \frac{U_{H}I_{2}}{I}; U = \eta U_{1} \quad ; \quad U = 114 \text{ B.}$$

$$U_{1}I_{1} \quad H \quad I_{2} \cdot 100(\%) \quad H$$

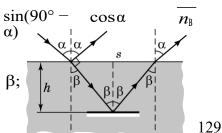
$$B) \quad U = U \quad + IR; \quad = \frac{U_{2} - U_{H}}{I_{2}}; R$$

$$2 \quad H \quad 2 \quad 2 \quad 2 \quad I_{2} \quad 2$$

Тест 14. Природа света

Вариант

1. a)
$$n_{\mathbf{K}} = \frac{C}{n} = \frac{C}{n}$$
; = 1,33.


1. a)
$$n_{\mathcal{K}} = \frac{\mathcal{C}}{\mathbf{c}} = \frac{\mathcal{C}}{\mathbf{c}}; = 1,33.$$

6) $\frac{\sin \alpha^{V}}{\mathbf{c}} = \frac{h_{\mathcal{K}}^{V}}{\mathbf{c}};$
 $\sin \beta = \frac{1}{n_{\mathcal{K}}^{V}}$
 $\sin \beta = \frac{1}{n_{\mathcal{K}}^{V}}$

$$\alpha = \operatorname{arctg}^{n_{\mathcal{K}}}; \ \alpha = 53^{\circ}.$$

B)
$$s = \underline{2h} \operatorname{tg} \beta;$$
 h $\sin \beta n_{\mathbb{B}}$

$$\beta = 90^{\circ} - \alpha; \frac{\sin \alpha}{\cos \alpha} = \frac{\sin \alpha}{\cos \alpha}$$

$$\alpha = 90^{\circ} - \beta$$
; $\underline{\sin(90^{\circ} - \beta)} \underline{n_{\mathcal{K}}}$;

$$\operatorname{ctg}\beta = \frac{n_{\mathcal{H}}}{n_{\mathcal{H}}}; \quad \frac{\sin\beta}{n_{\mathcal{H}}} \quad s = \frac{n_{\mathcal{H}}}{2hn_{\mathcal{H}}}; \quad s = 0.75 \text{ M}.$$

2. а) A_1B_1 — изображение предмета

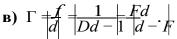
AB — действительное, обратное, увели-

ченное.

$$\frac{1}{d_1} + \frac{1}{f_1} = D; \frac{1}{f_1} = D - \frac{1}{d_1};$$

$$f = \frac{d_1}{d_1}; \quad f = 30 \text{ cm}.$$

$$1 Dd_{1} - 11$$


6)
$$f = \begin{bmatrix} 1 & 1 & 1 \\ d & 1 & 2d \end{bmatrix}$$
; $\Gamma = \begin{bmatrix} f_1 \\ d_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$;

$$2 \overline{Dd_2} - \overline{2Dd_1} - 1$$

$$\Gamma = \begin{vmatrix} f_2 \\ d_2 \end{vmatrix} = \frac{1}{d_2}; \quad \Gamma_2 \quad \underline{Dd_1 - 1}; \quad \Gamma_2 = \underline{1}.$$

$$2 \quad 2Dd_1 \quad \Gamma_1 \quad 2Dd_1 - \Gamma_1 \quad 4$$

Размер изображения уменьшится в 4 раза.

При 0 < d < F получается мнимое увеличенное изображение;

при
$$d = F \Gamma = \infty$$
;

при F < d < 2F получается действительное увеличенное изображение;

при
$$d$$
 = $2F$ Γ = 1 получается дей-

ствительное изображение в натуральную величину;

при d > 2F получается действительное уменьшенное изображение.

3. а) Линия красного цвета в спектре первого порядка бу- дет расположена дальше всего от центрального макси- мума, потому что красный цвет имеет наибольшую дли- ну волны.

6)
$$d \sin \varphi = k \lambda$$
; $\sin \varphi \approx \text{tg } \varphi = \frac{\Delta x}{2}$; $\frac{d\Delta x}{d} = k \lambda$; $d = \frac{k_1 \lambda L}{2}$; 130

$$d\sin = k\lambda; \quad k = \frac{d\sin\varphi_2}{\lambda}$$
 . Максимальный угол от-

клонения лучей после прохождения дифракционной ре-

шетки не может превышать 90°;
$$k \, k_{\text{max}} \leq k_2 = \leq \frac{d \, \sin 90^\circ}{m \, k_2}$$
; 6,58; $k_{\text{max}} = 6$.

 $\overline{2F}$ B F

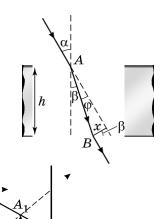
Вариан
$$\frac{1}{2} = \frac{c}{c}$$
; $v = \frac{c}{c}$; $v_B = n_C$;

6)
$$\varphi = \alpha - \beta$$
; $\frac{\sin \alpha}{\sin \beta} = \frac{n_{\text{C}}}{n_{\text{B}}}$; $\sin \beta = \frac{n_{\text{B}} \sin \alpha}{n_{\text{C}}}$; $\varphi = \alpha - \arcsin \frac{n_{\text{B}} \sin \alpha}{n_{\text{C}}}$; $\varphi = 5^{\circ}27'$.

$$\varphi = \alpha - \arcsin \frac{n_B \sin \alpha}{n_C}; \qquad \varphi = 5^{\circ}27'.$$

B)
$$x = AB \sin \varphi$$
; $AB = \frac{h}{\cos \varphi}$

$$\cos\beta = \sqrt{1 - \left(\frac{n_{\rm B} \sin\alpha}{n_{\rm C}}\right)^2};$$


$$x = h \frac{\sin\varphi}{\sqrt{1 - \left(\frac{n_{\rm B} \sin\alpha}{n_{\rm C}}\right)^2}};$$

$$x = 2.1 \text{ MM}.$$

2. а)
$$A_1B_1$$
 — изображение предмета AB — мнимое, прямое, уменьшенное.

$$\frac{1}{60} - \frac{1}{f_1} = -\frac{1}{f_2}$$

$$f_1 = \frac{d_1F}{d_1+F}; f_1 = 6 \text{ cm.}$$

$$\mathbf{6)} = \frac{\frac{d_{2}F}{d2+}}{\frac{d_{2}F}{d2+}} = \frac{d_{1}F}{d_{1}+2F};$$

$$\Gamma = \left| \frac{f_{1}}{d_{1}} \right| = \frac{F}{d_{1}+F}; \quad \Gamma = \left| \frac{f_{2}}{d_{2}} \right| = \frac{2F}{d_{1}+2F}; \quad \Gamma_{2} = 2(d_{1}+F); \quad \Gamma_{2} = 1,43.$$

$$\frac{d_{1}F}{d_{1}} = \frac{F}{d_{1}+F}; \quad \Gamma_{1} = \frac{2F}{d_{1}+2F}; \quad \Gamma_{1} = 1,43.$$

Размер изображения увеличится в 1,43 раза.

- **в)** Линзу необходимо поместить в среду, показатель преломления которой больше показателя преломления стекла линзы.
- 3. а) Линия фиолетового цвета в спектре первого порядка

будет расположена ближе всего от центрального макси- мума, потому что фиолетовый цвет имеет наименьшую длину волны.

Тест 15 Волновые свойства света

Вариант 1

- а) Фиалетового, потому что длина воолны у фиалетового наименьшая, следовательно угол откланения тоже будет наименьшей. Из формулы d*sin=k*l(l длина волны). Видна прямая зависимость.
- б) дальше из этой же формулы d*b/a=k*l $l=2*10^-5*36*10^-3/18*10^-1=400$ нм
- в) и снова по этой формуле $b=a*1/d=18*10^-1*8*10^-7/2*10^-5=7,2$ см

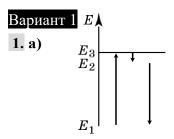
Вариант 2

- а) Фиалетового, потому что длина воолны у фиалетового наименьшая, следовательно угол откланения тоже будет наименьшей. Из формулы d*sin=k*1 (1 длина волны). Видна прямая зависимость.
- б) дальше из этой же формулы

$$d*b/a=k*1$$

$$1 = 2*10^{-5} * 36*10^{-3} / 18*10^{-1} = 400 \text{ HM}$$

в) и снова по этой формуле


$$b=a*1/d=18*10^{-1} * 8*10^{-7} / 2*10^{-5} = 7.2 \text{ cm}$$

Тест 16 Специальная теория относительности

Правильные ответы к тесту 16

	№ 1	№ 2	№3	№4	№5	№6	№7	№8
1 вариант	С	a	Д	б	б	С	a	c
2 вариант	б	С	a	c	a	б	б	a

Тест 17 Квантовая оптика

6)
$$\Delta E = hv = \frac{hc}{\lambda}$$
; $\lambda = \frac{hc}{\Delta E}$; $\lambda = 663$ HM.
B) $v = R(1/2^2 - 1/3^2)$; $= R(1/1^2 - 1/2^2)$;

B)
$$v = R(1/2^2 - 1/3^2); = R(1/1^2 - 1/2^2)$$

$$v = \frac{32'}{(1/2^2 - 1/3^2)} = \frac{v}{2} = \frac{2}{5}$$

$$\frac{32}{\sqrt{2}}$$
; $\frac{32}{\sqrt{2}}$ = 0,185; $\frac{21}{\sqrt{2}}$ = 5,4 $\frac{32}{\sqrt{2}}$ 21 32 22. **a**) $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ Масса ядра не изменится, номер хи-

мического элемента увеличится на единицу.

6)
$$\frac{\Delta N}{N_0} = \frac{N_0 - N}{N_0}$$
; $N = N_0$
B) $\frac{\Delta N}{N_0}$ $\frac{N_0}{N_0}$ $\frac{N_0}$

0

12 24 36 t, c

6)
$$\frac{\Delta N}{N_0} = \frac{N_0 - 1}{N_0}$$
; $N = N_0 \cdot \frac{t}{2}$ $\frac{\Delta}{N_0}$; $\frac{\Delta}{N_0}$;

- 3. а) ${}^{27}_{13}$ Al ${}^{+}_{1}$ ${}^{1}_{2}$ 24 Не ${}^{+}$ 24 Na. Ядро изотопа 24 Na состоит из Z = 11 протонов и N = 13 нейтронов.
 - **6)** $\Delta M = (Zm_D + Nm_n M_{\text{fl}}) = (Zm_D + Nm_n M_{\text{fl}}) M_{\text{fl}}$ Zm_e);

 $\Delta M = 0.18817$ a. e. m.

в)
$$= \Delta Mc^2$$
; $E = E_{CB} = \Delta Mc^2$; $= 7,3$ МэВ/нуклон.

I ариант 2

1. a)
$$E \downarrow$$

$$E_4$$

$$E_3$$

$$E_2$$

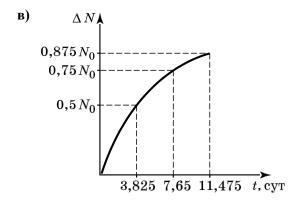
6)
$$\Delta E = hv$$
; $v = \Delta E$; $v = 6.1 \cdot 10^{14} \, \text{Fig.}$

$$42 \quad 42 \quad h \quad 42$$
B) $v = R (1/3^2 - 1/4^2)$; $= R (1/2^2 - 1/3^2)$; $\lambda = C$;
$$43^{3} \quad 3 \quad v$$

$$2 \quad 43^{3} \quad = (1/2^2 - 1/3^2) \quad = 2.86\lambda \, .$$

$$3 \quad 2 \quad 3 \quad v$$

$$2 \quad 43^{3} \quad = 2.86\lambda \, .$$


$$\lambda = \frac{43}{32}$$
3
2
 $(1/3^2 - 1/4^2) \lambda_{32}$

2. a)

222
$$R_{86} \rightarrow {}^{4}_{2}He + {}^{2}_{84}Po$$
. Масса ядра уменьшится на 4 еди-

ницы, номер уменьшится на 2 единицы.
6)
$$N = N_0 2^{-\frac{t}{2}} \frac{N_0}{N} = T$$
; $2^3 = T$; $t = 3T$; $t = 11,475$ сут \approx

 $\approx 11,5$ cyt.

0

3.
$$14_{\text{N}} + 4_{\text{He}} \rightarrow 1_{\text{H}} + 17_{\text{O}}$$
. Ядро изотопа 17_{O} состоит из $Z = 8$ 7 2 1 8 8

протонов и N = 9 нейтронов.

6)
$$\Delta E = E (^{14}N) + E (^{4}He) - E (^{1}H) - E (^{17}O) = [M(^{14}N) + M(^{4}He) - M(^{1}H) - M(^{17}O)]_{3Hak}^{c2};$$
 $\Delta E = -1,2$

«минус» означает то, что реакция протекает с поглощением энергии.

в) Из закона сохранения импульса
$$v_{\text{He}}$$
 = $\frac{M_{\text{N}}v_{\text{N}}}{M_{\text{He}}}$. Энергия,

поглощенная в результате реакции, равна сумме кинетических энергий вступивших в реакцию частиц:

$$E_{\rm N} = 0.267 \,{\rm M}{\rm pB}.$$
 $^2 \, M_{\rm He}{\rm N}$ $(M_{\rm N} + M_{\rm He})$

Тест 18 Физика атома и атомного ядра

Вариант 1

a)

Альфа-распад:
$${}^{A}_{Z}X={}^{A-4}_{Z-2}Y+{}^{4}_{2}He$$
 ${}^{27}_{13}Al={}^{23}_{11}Na+{}^{4}_{2}He$

Полученное вещество: Изотоп натрия 23 (Обычный натрий)

Дано: m(p) = 1.00728 а.е.м., m(n) = 1.00866 а.е.м., M(g) = 26.98146 а.е.м., 1 а.е.м. = 1.66057×10^{-27} кг Найти: Е(св) - ?

Решение:

Ответ: $E(cB) = 218.965 \text{ M}_{3}B$

Вариант 2

A)4 / 7N + 1 / 0n = > ; 1 / 1H + 14 / 6C.

714N+01n=11p+ZAE{14+1=1+A7+0=1+Z{A=14Z=6

Б)Z = 6, значит элемент - - углерод (С), а точнее, его изотоп 614С..

Тест 19 Строение Солнечной Системы

Вариант 1

1a,2b,3b,4b,5a,6a,7b,8a,9b,10a,11b,12a,13a,14b,15b,16a,17a,18a,19b,20b Вариант 2 1a,2a,3b,4a,5b,6b,7a,8a,9b,10b,11b,12r,13b,14b,15a,16b,17b,18b,19b,20r

Тест20 Эволюция Вселенной

Вариант 1

1. Наука о Вселенной, изучающая расположение, движение, структуру, происхождение и развитие небесных тел (планет, звёзд, астероидов и т. д.) и систем 2. Для наблюдения за отдалёнными объектами 3.Зенит 4.Полуденная линия 5.Земля. 6 Эллиптическим 7. Перигелия

Вариант 2

1.Смещается к её красному концу. 2. Большие рамеры и масса. 3.Между Марсом и Юпитером. 4. Водород и гелий. **5.** G2V Жёлтый карлик **6.** 88.**7.** Кеплер

141

Приложение 3. Ключи к контрольно-оценочным средствам для промежуточной аттестации

Задачи к экзамену.

1.

Дано:
$$\lambda_{\text{кp}} = 530 \text{ HM} \\ c = 3 \cdot 10^8 \text{ M/c} \\ h = 6, 63 \cdot 10^{34} \text{Дж×c} \\ \hline A_{\text{Bыx}}\text{-}?$$

Решение

Работа выхода в Дж находится по формуле $A_{\text{вых}} = h \nu_{\text{кр}}$, $A_{\text{вых}} = \frac{hc}{\lambda_{\text{кр}}}$

$$A_{\text{вых}} = 6, \, 6 \cdot 10^{-34} \cdot 3 \cdot 10^{8} / \, 530 \cdot 10^{-9} = 3,73 \cdot 10^{-17} \,$$
Дж Выразим работу выхода в эВ $A_{\text{вых}} = A_{\text{ вых}} / \, 1,6 \cdot 10^{-19} \,$ Дж =2, 34 эВ

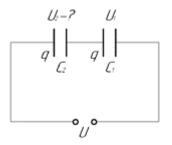
Ответ: 2, 34 эВ

2.

Ответ: 271нм

3.

1. Реактивное сопротивление катушки:


$$X_L = \omega L = 628 \cdot 0.5 = 314 \text{ Om};$$

2. Зависимость от времени напряжения на катушке:

$$u(t) = i_m X_L \sin \left(628t + \frac{\pi}{2} \right) = 31.4 \sin \left(628t + \frac{\pi}{2} \right);$$

142

4.

формула электроемкости:

$$C=q\times U$$

Выразим из этой формулы заряд q:

$$q=C\times U$$

Пусть U1 – напряжение на первом конденсаторе, а U2 – напряжение на втором.

Известно, что при последовательном соединении конденсаторов заряд на их обкладках

одинаковый, а общее напряжение равно сумме напряжений на каждом из конденсаторов.

Учитывая все написанное и пользуясь формулой (1), получим такую систему:

C1U1=C2U2

U=U1+U2

Из верхнего равенства системы выразим напряжение U1:

U1=U2C2C1

Полученное выражение подставим в нижнее равенство системы:

U=U2C2C1+U2

U=U2C1+C2C1

Откуда искомое напряжение на втором конденсаторе U2 (который имеет меньшую емкость) равно:

U2=UC1C1+C2

 $U2=220\cdot4\cdot10-64\cdot10-6+1\cdot10-6=176B=0,176\kappa B$

5.

Магнитный поток, пронизывающий все N витков соленоида, можно рассчитать по формуле Φ = $B\times S\times N$, но по условию он нам дан (с учетом количества витков), тогда энергия магнитного поля катушки:

$$W=\Phi \times i/2=2,3\times 10^{-3}\times 7,5/2=8.6\times 10^{-3}$$
 Дж

Ответ 8.6×10⁻³ Дж

143

6.

Магнитный поток, пронизывающий все N витков соленоида, можно рассчитать по формуле Φ =B×S×N, но по условию он нам дан (с учетом количества витков), тогда энергия магнитного поля катушки:

$$W=\Phi \times i/2=2,3\times 10^{-3}\times 7,5/2=8.6\times 10^{-3}$$
 Дж

Ответ 8.6×10^{-3} Дж

7.

Для решения этой задачи, нам понадобится использовать закон Фарадея для индукции электромагнитной силы и формулу для силы тока в соленоиде.

В формуле для индукции электромагнитной силы, известные значения — число витков (N=820), магнитное поле ($B=1.2*10^-3$ Тл) и длина соленоида (l=64 см = 0.64 м).

Известно, что электромагнитная сила (F) вызывает движение электронов, создавая электрический ток (I) в соленоиде.

Формула для силы тока в соленоиде без сердечника имеет вид:

$$I = (N * B * A) / L$$

где N — число витков, В — магнитное поле, А — площадь поперечного сечения соленоида, L — длина соленоида.

Поскольку у нас соленоид без сердечника, то площадь поперечного сечения (А) равна площади проводника.

По формуле для площади проводника: $A = \pi * r^2$, где r — радиус соленоида.

Теперь, найдем радиус соленоида:

$$r = 1/(2 * \pi) = 0.64/(2 * 3.14) \approx 0.101 \text{ M}$$

Теперь, подставим известные значения в формулу для силы тока:

$$I = (820 * 1.2 * 10^{-3} * \pi * (0.101)^{2}) / 0.64$$

По расчетам, сила тока (I) в соленоиде без сердечника составляет приблизительно 0.0089 Ампер.

Ответ:

I=0.0089 A

8.

L = 35 мГн = 3,5·10–3 Гн; v1 = 60 Гц; v2 = 240 Гц; v3 = 480 Гц; XL1 – ? XL2 – ? XL3 – ? XL1 =
$$2\pi v1L$$
 = $2 \cdot 3,14 \cdot 60 \cdot 3,5 \cdot 10$ – $2 \approx 13,2$ Ом; XL2 = $2\pi v2L$ = $2 \cdot 3,14 \cdot 240 \cdot 3,5 \cdot 10$ – $2 \approx 52,8$ Ом; XL3 = $2\pi v3L$ = $2 \cdot 3,14 \cdot 480 \cdot 3,5 \cdot 10$ – $2 \approx 105,6$ Ом.

$$c = 3 \times 10^8 \text{ m/c}$$

$$C=2.6 \text{ m} \oplus =2.6 \times 10^{-12} \text{ } \oplus$$

$$L=0.012 \text{ M}\Gamma\text{H}=0.012\times10^{-3} \Gamma\text{H}$$

λ - длина волны

Собственная частота контура определяется формулой Томсона:

$$v=1/(2\pi\sqrt{(LC)})$$

$$\lambda = c/v = c \times (2\pi\sqrt{(LC)}) = 3 \times 10^8 \times 2\pi \times \sqrt{(0.012 \times 10^{-3} \times 2.6 \times 10^{-12})} = 10.5288 \text{ m} = 10.5 \text{ m}$$

Резонансная частота колебательного контура

$$f = 1/2\pi\sqrt{LC} = 1/2\pi\sqrt{2.6\times10^{-12}\times0.012\times10^{-3}} = 1/2\pi\times5.6\times10^{-9} = 3\times10^{7} \Gamma_{II}$$

$$\lambda = 3 \times 10^8 / 3 \times 10^7 = 10 \text{ M}$$

10.

Альфа-распад:

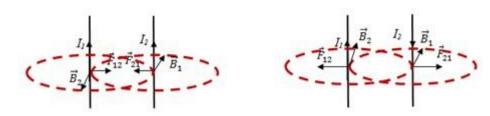
$$_{\boldsymbol{Z}}^{\boldsymbol{A}}\boldsymbol{X} = \ _{\boldsymbol{Z}-2}^{\boldsymbol{A}-4}\boldsymbol{Y} \ _{\boldsymbol{2}}^{4}\boldsymbol{H}\boldsymbol{e}$$

Бета-распад:

$${}_{\boldsymbol{Z}}^{\boldsymbol{A}}\boldsymbol{X} = {}_{\boldsymbol{Z}1}^{\boldsymbol{A}}\boldsymbol{Y} \, {}_{-1}^{\boldsymbol{0}}\boldsymbol{e}$$

Решение:

$$1)_{90}^{232}Th = {}_{2}^{4}He_{88}^{228}Ra$$


$$2)_{88}^{228} Ra = _{89}^{228} Ac_{-1}^{0} e$$

$$3)_{89}^{228}Ac = _{90}^{228}Th_{-1}^{0}e$$

$$4)_{90}^{228}Th = {}_{2}^{4}He_{88}^{224}Ra$$

Полученное вещество: изотоп радия 224

11.

Расстояние между проводниками значительно меньше длины проводников, поэтому проводники можно рассматривать как бесконечно длинные.

Сила взаимодействия параллельных бесконечно длинных проводников

$$F = \frac{\mu_0 I_1 I_2}{2\pi d} \ell_{145}$$

Сила тока

$$I = \sqrt{\frac{2\pi dF}{\mu_0 \ell}} = \sqrt{\frac{2 \cdot \pi \cdot 8, 7 \cdot 10^{-2} \cdot 2, 5 \cdot 10^{-2}}{4 \cdot \pi \cdot 10^{-7} \cdot 3, 2}} = 58,296 A$$

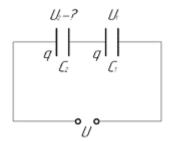
Ответ:

$$I_1 = I_2 = 58,296 A$$

12.

Формула Томсона через частоту v=1/(2 π $\sqrt{(LC1)}$), подставляя числовые значения получаем 1550 Гц или 1,55 кГц

При последовательном соединении конденсаторов


$$1/C=1/C1+1/C2+1/C3+1/C4$$
 или $1/C=1/C1+1/C1+1/C1+1/C1=4/C1$ или $C=C1/4$

Если разделить вторую частоту на первую получим v2/ v1 =1/($2\pi\sqrt{(LC)}$) / 1/($2\pi\sqrt{(LC1)}$) и после сокращения получим $\sqrt{(C1/\sqrt{(C1/4, a)})}$ а это $\sqrt{(4 pabho 2)}$

Ответ: v1=1,55 к Γ ц, увеличиться в 2 раза

13.

3. Два конденсатора с емкостями 4 и 1 мкФ соединили последовательно и подключили к напряжению 220 В. Найти общую электроемкость конденсаторов и напряжений на них.

формула электроемкости:

$$C=q\times U$$

Выразим из этой формулы заряд q:

$$q=C\times U$$

Пусть U1 – напряжение на первом конденсаторе, а U2 – напряжение на втором.

Известно, что при последовательном соединении конденсаторов заряд на их обкладках одинаковый, а общее напряжение равно сумме напряжений на каждом из конденсаторов.

Учитывая все написанное и пользуясь формулой (1), получим такую систему:

Из верхнего равенства системы выразим напряжение U1:

Полученное выражение подставим в нижнее равенство системы:

Откуда искомое напряжение на втором конденсаторе U2 (который имеет меньшую емкость) равно:

$$U2=220\cdot 4\cdot 10-64\cdot 10-6+1\cdot 10-6=176B=0,176\kappa B$$

14.

Магнитный поток, пронизывающий все N витков соленоида, можно рассчитать по формуле Φ = $B\times S\times N$, но по условию он нам дан (с учетом количества витков), тогда энергия магнитного поля катушки:

$$W=\Phi \times i/2=2,3\times 10^{-3}\times 7,5/2=8.6\times 10^{-3}$$
 Дж

Ответ 8.6×10-3 Дж

15.

$$E=k\times q/R^2$$

$$q=E\times R^2/k=2\times 10^4\times 0.05^2/9\times 10^9$$

16.

$$c = 3 \times 10^8 \text{ m/c}$$

$$C=2.6$$
 пф= 2.6×10^{-12} Ф

L= 0,012 мГн=
$$0.012 \times 10^{-3}$$
 Гн

λ - длина волны

Собственная частота контура определяется формулой Томсона:

$$v=1/(2\pi\sqrt{(LC)})$$

$$\lambda = c/v = c \times (2\pi\sqrt{(LC)}) = 3 \times 10^8 \times 2\pi \times \sqrt{(0.012 \times 10^{-3} \times 2.6 \times 10^{-12})} = 10.5288 \text{ m} = 10.5 \text{ m}$$

Резонансная частота колебательного контура

$$f = 1/2\pi\sqrt{LC} = 1/2\pi\sqrt{2.6\times10^{-12}\times0.012\times10^{-3}} = 1/2\pi\times5.6\times10^{-9} = 3\times10^{7} \Gamma_{II}$$

$$\lambda = 3 \times 10^8 / 3 \times 10^7 = 10 \text{ m}$$

17. 147

Альфа-распад:

$${}_{\boldsymbol{Z}}^{\boldsymbol{A}}\boldsymbol{X} = {}_{\boldsymbol{Z}-2}^{\boldsymbol{A}-4}\boldsymbol{Y} \, {}_{2}^{4}\boldsymbol{H}\boldsymbol{e}$$

Бета-распад:

$${}_{\boldsymbol{Z}}^{\boldsymbol{A}}\boldsymbol{X} = {}_{\boldsymbol{Z}1}^{\boldsymbol{A}}\boldsymbol{Y} \, {}_{-1}^{\boldsymbol{0}}\boldsymbol{e}$$

Решение:

$$_{1)}_{90}^{232}Th = {}_{2}^{4}He_{88}^{228}Ra$$

$$2)_{88}^{228} Ra = _{89}^{228} Ac_{-1}^{0} e$$

$$3)_{89}^{228}Ac = {}_{90}^{228}Th_{-1}^{0}e$$

$$_{4)}_{90}^{228}Th = {}_{2}^{4}He_{88}^{224}Ra$$

Полученное вещество: изотоп радия 224

18.

Формула Томсона через частоту v=1/(2 π $\sqrt{(LC1)}$), подставляя числовые значения получаем 1550 Гц или 1,55 кГц

При последовательном соединении конденсаторов

$$1/C=1/C1+1/C2+1/C3+1/C4$$
 или $1/C=1/C1+1/C1+1/C1+1/C1=4/C1$ или $C=C1/4$

Если разделить вторую частоту на первую получим v2/ v1 =1/($2\pi\sqrt{(LC)}$) / 1/($2\pi\sqrt{(LC1)}$) и после сокращения получим $\sqrt{(C1/\sqrt{(C1/4, a ext{ > 10})})}$ 4 равно 2

Ответ: v1=1,55 к Γ ц, увеличиться в 2 раза

19.

Лучи света - ОБРАТИМЫ.

Поэтому задачу сформулируем так:

"Луч света падает из воздуха в глицерин. Найдите угол падения."

Решение:

Коэффициент преломления глицерина

n = 1.47

Запишем закон преломления света:

$$\begin{array}{l} n=\sin\alpha / \sin\beta \\ \sin\alpha = n^* \sin\beta = 1,47^* \sin22^\circ = 1,47^*0,3746 \approx 0,551 \\ \alpha \approx 33^\circ \end{array}$$

20.

$$I=EДC/(R+r)=120/(3+21)=5 A$$

$$U_{reh}=r\times I=3\times 5=15 B$$

21.

По определению плотность тока ј равна отношению силы тока I на площадь поперечного сечения проводника S, то есть: 148

$$j=I/S$$
 (1)

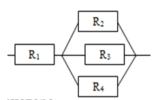
Сила тока I:

$$I=q/t (2)$$

Очевидно, что протекший заряд q равен произведению заряда электрона на их количество, то есть:

$$q=Ne$$
 (3)

Заряд электрона е (вернее модуль заряда) равен 1,6·10-19 Кл. Подставим (3) в (2), тогда:


I=Ne/t

Полученное выражение подставим в (1), тогда:

 $j=6\cdot10^{18}\cdot1,6\cdot10^{-19}/1,2\cdot10^{-6}\cdot0,4=2\cdot10^{6}A/M^{2}=2A/MM^{2}$

OTBET: 2 A/mm^2 .

22.

Дано: U=18B R1=1,6Ом R2=4Ом R3=6Ом R4=12Ом найти R,I1,I2,I3,I4

решение: смешанная

цепь 1/R234=1/R2+1/R3+1/R4=1/4+1/6+1/12=6/12 R234=2Ом R=R1+R234=1,6+2=3,6Ом по

закону ома I=U/R=18/3,6=5A I=I1 =I234=5A часть 234 состоит из 3 частей, как 1:2:3,то 1 часть

23.

$$R = 4.8 \text{ Om}$$

$$r + R = ЭДС/I$$

$$r = ЭДС/I - R = 2/0.4 - 4.8 = 0.2 Ом$$

$$U = R I = 4.8 \times 0.4 = 1.92 B$$

24.

Магнитный поток, пронизывающий все N витков соленоида, можно рассчитать по формуле Φ = $B\times S\times N$, но по условию он нам дан (с учетом количества витков), тогда энергия магнитного поля катушки:

$$W=\Phi \times i/2=2,3\times 10^{-3}\times 7,5/2=8.6\times 10^{-3}$$
 Дж

25. 149

$$I=EДC/(R+r)=120/(3+21)=5 A$$

$$U_{\text{reh}} = r \times I = 3 \times 5 = 15 \text{ B}$$

26.

$$L = 35 \text{ м}\Gamma_H = 3.5 \cdot 10 - 3 \Gamma_H$$
; $v1 = 60 \Gamma_H$; $v2 = 240 \Gamma_H$; $v3 = 480 \Gamma_H$;

$$XL1 - ? XL2 - ? XL3 - ?$$

$$XL1 = 2\pi v1L = 2 \cdot 3,14 \cdot 60 \cdot 3,5 \cdot 10 - 2 \approx 13,2 \text{ Om};$$

$$XL2 = 2\pi v 2L = 2 \cdot 3.14 \cdot 240 \cdot 3.5 \cdot 10 - 2 \approx 52.8 \text{ Om};$$

$$XL3 = 2\pi v3L = 2 \cdot 3,14 \cdot 480 \cdot 3,5 \cdot 10 - 2 \approx 105,6 \text{ Om}.$$

27.

Альфа-распад:

$${}_{Z}^{A}X = {}_{Z=2}^{A-4}Y {}_{2}^{4}He$$

Бета-распад:

$$_{\boldsymbol{Z}}^{\boldsymbol{A}}\boldsymbol{X} = _{\boldsymbol{Z}1}^{\boldsymbol{A}}\boldsymbol{Y} _{-1}^{\boldsymbol{0}}\boldsymbol{e}$$

Решение:

$$_{1)}_{90}^{232}Th = {}_{2}^{4}He_{88}^{228}Ra$$

$$2)_{88}^{228} Ra = _{89}^{228} Ac_{1}^{0} e$$

$$3)_{89}^{228}Ac = {}_{90}^{228}Th_{-1}^{0}e$$

$$4)_{90}^{228}Th = {}_{2}^{4}He_{88}^{224}Ra$$

Полученное вещество: изотоп радия 224

28.

L = 35 мГн = 3,5·10–3 Гн; v1 = 60 Гц; v2 = 240 Гц; v3 = 480 Гц; XL1 – ? XL2 – ? XL3 – ? XL1 =
$$2\pi v1L$$
 = $2 \cdot 3,14 \cdot 60 \cdot 3,5 \cdot 10$ – $2 \approx 13,2$ Ом; XL2 = $2\pi v2L$ = $2 \cdot 3,14 \cdot 240 \cdot 3,5 \cdot 10$ – $2 \approx 52,8$ Ом; XL3 = $2\pi v3L$ = $2 \cdot 3,14 \cdot 480 \cdot 3,5 \cdot 10$ – $2 \approx 105,6$ Ом.

29

$$c = 3 \times 10^8 \text{ m/c}$$

$$C=2.6 \pi \varphi = 2.6 \times 10^{-12} \Phi$$

$$L=0.012 \text{ M}\Gamma\text{H}=0.012\times10^{-3} \Gamma\text{H}$$

λ - длина волны

Собственная частота контура определяется формулой Томсона:

$$v=1/(2\pi\sqrt{(LC)})$$

$$\lambda = c/v = c \times (2\pi\sqrt{(LC)}) = 3 \times 10^8 \times 2\pi \times \sqrt{(0.012 \times 10^{-3} \times 2.6 \times 10^{-12})} = 10.5288 \text{ m} = 10.5 \text{ m}$$

150

Резонансная частота колебательного контура

$$f = 1/2\pi\sqrt{LC} = 1/2\pi\sqrt{2},6\times10^{-12}\times0,012\times10^{-3} = 1/2\pi\times5,6\times10^{-9} = 3\times10^7$$
 Гц $\lambda = 3\times10^8/3\times10^7 = 10$ м

30.

$$I=EДC/(R+r)=120/(3+21)=5 A$$

$$U_{reh} = r \times I = 3 \times 5 = 15 B$$

31.

Магнитный поток, пронизывающий все N витков соленоида, можно рассчитать по формуле $\Phi=B\times S\times N$, но по условию он нам дан (с учетом количества витков), тогда энергия магнитного поля катушки:

$$W=\Phi \times i/2=2,3\times 10^{-3}\times 7,5/2=8.6\times 10^{-3}$$
 Дж Ответ 8.6×10^{-3} Дж

32.

Магнитный поток, пронизывающий все N витков соленоида, можно рассчитать по формуле Φ = $B\times S\times N$, но по условию он нам дан (с учетом количества витков), тогда энергия магнитного поля катушки:

W=
$$\Phi \times i/2 = 2,3 \times 10^{-3} \times 7,5/2 = 8.6 \times 10^{-3}$$
 Дж

Лист изменений и дополнений к комплекту контрольно-оценочных средств

Допол	нения и	изменения	к комплекту	КОС на	y	чебный год	ПО
дисциплине							
В комі	плект КО	С внесены сл	едующие измо	енения:			
			· · · · · · · · · · · · · · · · · · ·				
Допол	нения и	изменения	в комплекто	е КОС обсу	ждены на	заседании	ЦК
«»		_ 20r. (протокол № _).			
Председател	њ ЦК <u></u>		/_	/			