ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ЧЕРЕМХОВСКИЙ ГОРНОТЕХНИЧЕСКИЙ КОЛЛЕДЖ ИМ. М.И. ШАДОВА»

Утверждаю: Директор ГБПОУ «ЧГТК им. М.И. Щадова» С.Н. Сычев «22» февраля 2024 г.

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

EH.01 Элементы высшей математики программы подготовки специалистов среднего звена по специальности

09.02.07 Информационные системы и программирование

Комплект контрольно-оценочных средств разработан на основе ФГОС СПО по специальности *09.02.07 Информационные системы и программирование* программы учебной дисциплины *Элементы высшей математики*.

Разработчик:

Литвинцева Евгения Александровна – преподаватель ГБПОУ ИО «Черемховский горнотехнический колледж им. М.И. Щадова»

Одобрено на заседании цикловой комиссии:

«Информатики и BT»

Протокол №5 от «09» январь 2024 г.

Председатель ЦК: Чипиштанова Д.В.

Одобрено Методическим советом колледжа

Протокол №3 от «10» январь 2024 г.

Председатель МС: Е.А. Литвинцева

СОДЕРЖАНИЕ

		CTP.						
1.	ПАСПОРТ КОМПЛЕКТА КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ	4						
2.	РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ							
3.	ФОРМЫ И МЕТОДЫ ОЦЕНИВАНИЯ							
4.	КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ	5						
5.	КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ КАЧЕСТВА ЗНАНИЙ	6						
6.	КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ	9						
	ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ К КОМПЛЕКТУ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ	25						

1. ПАСПОРТ КОМПЛЕКТА КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

В результате освоения учебной дисциплины Элементы высшей математики обучающийся должен обладать предусмотренными ФГОС СПО специальности 09.02.07 Информационные системы и программирование, общими и профессиональными компетенции:

ОК 1. Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам

ОК 5. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста.

Учебным планом предусмотрена промежуточная аттестация по учебной дисциплине **Элементы высшей математики** в форме экзамена.

2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

В результате аттестации осуществляется комплексная проверка следующих умений и знаний, которые формируют общие и профессиональные компетенции:

Базовая часть:

умения:

- выполнять операции над матрицами и решать системы линейных уравнений;
- решать задачи, используя уравнения прямых и кривых второго порядка на плоскости;
- применять методы дифференциального и интегрального исчисления;
- решать дифференциальные уравнения;
- пользоваться понятиями теории комплексных чисел.

знания:

- основы математического анализа, линейной алгебры и аналитической геометрии;
- основы дифференциального и интегрального исчисления;
- основы теории комплексных чисел.

Вариативная часть:

умения:

- решать задачи с использованием системы линейных уравнений;
- производить анализ систем линейных уравнений;

знания:

- правило Крамера;
- метод Гаусса;
- взаимное расположение прямых;
- теорему Коши;
- правило Лопиталя;
- комплексные числа и операции над ними;
- интерполяционный многочлен Лагранжа.

3. ФОРМЫ И МЕТОДЫ ОЦЕНИВАНИЯ

Контроль и оценка знаний, умений, а также сформированность общих и профессиональных компетенций осуществляются с использованием следующих форм и методов: выполнение тестового задания и практического задания (по итогам изучения дисциплины); выполнение и защита практических работ; выполненные самостоятельных работ. Оценка освоения дисциплины Элементы высшей математики предусматривает использование накопительной системы оценивания и проведение экзамена по дисциплине.

4. КОНТРОЛЬНО – ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ

Задания для текущего контроля по темам

Тема №1 Матрицы и определители

Устный опрос

Самостоятельная работа № 1 (методические указания для выполнения самостоятельных работ)

Практическое занятие 1-3(методические указания по практическим занятиям студентов)

Тема №2 Системы линейных уравнений

Устный опрос

Практическое занятие 4-6(методические указания по практическим занятиям студентов)

Тема №3 Теория пределов

Устный опрос

Самостоятельная работа № 3 (методические указания для выполнения самостоятельных работ)

Тема №4 Векторы и действия над ними

Устный опрос

Самостоятельная работа № 4 (методические указания для выполнения самостоятельных работ)

Тема №5 Аналитическая геометрия на плоскости

Устный опрос

Самостоятельная работа № 4 (методические указания для выполнения самостоятельных работ)

Практическое занятие 7-9 (методические указания по практическим занятиям студентов)

Тема №6 Дифференциальное исчисление функции одной и нескольких действительных переменных

Устный опрос

Самостоятельная работа № 5 (методические указания для выполнения самостоятельных работ)

Практическое занятие 10-12 (методические указания по практическим занятиям студентов)

Тема №7 Интегральное исчисление функции одной и нескольких действительных переменных

Устный опрос

Практическое занятие 13-17 (методические указания по практическим занятиям студентов)

Тема №8 Теория рядов

Устный опрос

Практическое занятие 18-19 (методические указания по практическим занятиям студентов)

Тема №9 Обыкновенные дифференциальные уравнения

Устный опрос

Практическое занятие 20-22 (методические указания по практическим занятиям студентов)

Тема №10 Основы теории комплексных чисел.

Устный опрос

Самостоятельная работа № 6 (методические указания для выполнения самостоятельных работ)

Практическое занятие 23 (методические указания по практическим занятиям студентов)

5. КОНТРОЛЬНО – ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ КАЧЕСТВА ЗНАНИЙ

Тестовые задания для контроля качества знаний

Расчетное задание 1

Текст задания

Решите уравнения, неравенства, системы уравнений и неравенств. и вариант

1)
$$\begin{cases} 5-x > 2x-4, \\ 3x-7 < 3-2x. \end{cases}$$

1)
$$\begin{cases} 5-x > 2x-4, \\ 3x-7 < 3-2x. \end{cases}$$
2)
$$\begin{cases} 2x - 7y = -8, \\ 3x+2y=13. \end{cases}$$
2)
$$\begin{cases} 2x - 3y = 3x \\ 7x-3 > 4x+2. \end{cases}$$
2)
$$\begin{cases} 7x - 5y = 13, \\ 4x - 3y = 7. \end{cases}$$

2)
$$\begin{cases} 2x - 7y = -8, \\ 3x + 2y = 13. \end{cases}$$

2)
$$\begin{cases} 4x - 3y = 7. \end{cases}$$

3)
$$x^3 - 2x^2 - 5x + 6 = 0$$

3)
$$x^3 - 2x^4 - x + 2 = 0$$
.
4) $3x^2 - 13x - 10 \le 0$.

3)
$$x^3 - 2x^2 - 5x + 6 = 0$$
.
4) $5x^2 - 24x + 16 \ge 0$.
5)
$$\begin{cases} x^2 + y^2 + x + y = 68, \\ x^2 - y^2 + x - y = 44 \end{cases}$$
5)
$$\begin{cases} x^2 - xy = 4, \\ y^2 - xy = -2, \end{cases}$$

5)
$$\begin{cases} x^2 - xy = 4, \\ x^2 - xy = 4, \end{cases}$$

Расчетное задание 2

Текст задания

І вариант

- ___1) Найдите координаты эсктора AB, ec.ms A(-2; -3), B(1; 4).
- Точка C(2; 3) делит AB в отношении 1:4 (от А х В). Найдите точку A, если B(-6; -1).
- 3) Найдите точку . М., равноудаленную от осей координат и от данпой точки A(4; −2).

Расчетное задание 3

Текст задания

II вариант

- Даны точки A(-3; -4) и B(2; 5). Разложите вектор AB по единичным векторам і и ј координатных осей.
- Отрезок AB задан точками A(7; -4) и B(-8; 1) и делится точкой С в отношении 1:4 (от А к В). Найдите точку C.

І вариант

1)
$$f(x) = \frac{2}{x} - \frac{8}{\sqrt{x}} + \frac{6}{\sqrt[3]{x^2}} + 2x + \frac{6}{x^2}$$

 $+6x^2\sqrt{x}$; найдите f'(1).

 $f'(\sqrt{3})$.

3)
$$f(z) = \frac{9z}{\sqrt{z^2 + 1}};$$
 найдите

 $f'(2\sqrt{2})$.

4) $f(x) = e^{2x} \cdot \ln x^2$; найдяте f'(1).

5) Точка движется прямодинейно HO SAKOHY $s = 2t^3 - 2t^2 - 4$ (s -- B MCTрах, /-- в секупдах). Найдите ускорение точки в конце 2-й секунды.

ІІ вариант

1)
$$f(x) = \frac{2}{x} - \frac{8}{\sqrt{x}} + \frac{6}{\sqrt{x^2}} + 2x +$$
 1) $f(x) = \frac{1}{x^2} + \frac{3}{2\sqrt[3]{x^2}} - \frac{4}{\sqrt{x}} + 3x -$

 $-2x^2\sqrt{x}$; найдите f'(1).

2) $f(x)=(x^2-2)\sqrt{x^2+1};$ найдите 2) $f(u)=(u^2+3)\sqrt{u^2-1};$ найдите $f'(\sqrt{2}).$

3)
$$f(x) = \frac{x}{1 - \sqrt{x^2 + 1}}$$
; найдите

 $f'(\sqrt{3})$.

f(x)=√e^x ln x²; найдите f'(1).

5) Точка движется прямолинейно по закону $s = 2t^3 - 3t^2 + 4$ (s — в мстрах, t — в секундах). Найдите ускорение точки в конце 3-й секунды,

Расчетное задание 4

Текст задания

Исследуйте на непрерывность функции:

1) y = -5x; 2) y = 4x - 3.

1) y = -3x; 2) y = 4x - 3. 1) $v = 2t^2$; 2) $y = x^2 + 2$; 3) $s = t^2 - t$; 4) $y = x - 3x^2$; 5) $y = x^3$; 6) $y = -x^3 - 1$; 7) $y = 2x^3$. 1) $y = x^2 + 4x + 3$ B TOURE x = 2; 2) $y = x^3 - 5$ B TOURE x = 1.

Расчетное задание 5 Текст задания

І вариант

Вычислите производные при запанных значениях аргумента;

1)
$$f(x) = \sin^2 \ln e^x$$
, $f'(0)$;

2)
$$f(x) = 3 \ln \sqrt{\cos 2x}$$
, $f'(\pi/8)$;

П вариант

Вычислите производные при заданных значениях аргумента:

1)
$$f(x) = \ln tg^2 2x$$
, $f'(\pi/8)$;

2)
$$f(x) = 2 \ln \sqrt{\sin 2x}$$
, $f'(\pi/8)$;

За правильный ответ на вопросы или верное решение задачи выставляется положительная оценка – 1 балл.

За неправильный ответ на вопросы или неверное решение задачи выставляется отрицательная оценка -0 баллов.

Расчетное задание 6

Текст задания

I вариант

1) Найдите промежутки монотон-ности функции $y=-\frac{1}{3}x^3+\frac{1}{2}x^2+1$. ности функции $y=x^4-4x+4$.

2) Найдите наименьшее и наи-большее значения функции $y = \frac{1}{3}x^3 +$ большее значения функции $y = \frac{1}{3}x^3 +$ $+\frac{1}{2}x^2-2x-\frac{1}{3}$ на отрезке $-2\leqslant x\leqslant 2$. $+x^2-3x-4$ на отрезке $-4\leqslant x\leqslant 2$.

3) Найдите промежутки выпуклости и точки перегиба кривых:

а) $y=x^3+3x^2$; б) $y=\frac{1}{3}x^3-4x$.

3) Найдите промежутки выпуклости и точки перегиба кривых:

а) $y=x^3+3x^2$; б) $y=\frac{1}{3}x^3-4x$.

4) Дан закон прямодинейного 4) Дан закон примодиненны о движения точки $s=-\frac{1}{6}t^3+\frac{1}{2}t^2+\frac{1}{2}t+$ +1 (t-в секундах, s-в метрах). Найдите максимальную скорость движения этой точки.

II вариант

a)
$$y=x^3-12x^2+145$$
; 6) $y=\frac{1}{3}x^3+$

 $+x^{2}+\frac{1}{3}$.
4) Дан захон прямолинейного движения точки $x = -\frac{1}{3}t^3 + 3t^2 + 5t + 3$

 $(t-\mathbf{B}$ секундах, $s-\mathbf{B}$ метрах). Най-дите максимальную скорость движения этой точки.

Расчетное задание 7 Текст задания

1 вариант

Найдите интегралы:

1)
$$\int \frac{x^2 + x^3 \sqrt{x} + \sqrt{x}}{x \sqrt{x}} dx;$$
2)
$$\int \left(\frac{2}{\sqrt{9 - 4x^2}} + \frac{1}{e^x}\right) dx;$$
3)
$$\int \frac{dx}{\sin x \cos x}.$$

4) Составьте уравнение кривой, проходящей через точку (-2; 8), если угловой коэффициент касательной в любой точке касания равен 2x-4.

Скорость прямолинейного движения точки $v = 3t^2 + 6t - 4$. Найдите закон движения точки, если за время t=2 с она прошла путь 8 м.

II варнант

Найдите интегралы:

1)
$$\int \frac{\sqrt{x} - \sqrt[3]{x^2 - x^{-1/2}}}{x\sqrt{x}} dx;$$
2)
$$\int \left(\frac{1}{\sqrt{3 - x^2}} + \frac{1}{e^x}\right) dx;$$
3)
$$\int (4\sin^2 x \cos x - \cos x) dx.$$

4) Найдите уравиение кривой, проходящей через точку $A(\pi/3; 1/2)$, если угловой коэффициент касательной к кривой в каждой ее точке ра-

5) Точка движется прямодинейно с ускорением a=6t+6. Найдите закон движения точки, если s=0 в момент времени t=0, а в момент времени t=3 с скорость v=40 м/с.

Расчетное задание 8

Текст задания

Вычислите приближенно определенные интегралы:

1)
$$\int_{\frac{\pi}{x}}^{2} dx$$
 по формуле прямоугольников (12.1) $(n=10)$;
2) $\int_{\frac{\pi}{x}}^{2} dx$ по формуле транеций $(n=10)$;
3) $\int_{\frac{\pi}{x}/3}^{2} x \sin x \, dx$ по формуле прямоугольников (12.2) $(n=12)$;
4) $\int_{\frac{\pi}{x}/3}^{2} \sin x \, dx$ по формуле транеций $(n=6)$;
5) $\int_{\frac{\pi}{x}/3}^{2} \sin x \, dx$ по формуле Симпсона $(2n=6)$.

Расчетное задание 9 Текст задания

І вариант

- Вычислите дифференциал функции y=ln cos² x при x=π/4 и dx=0,01.
- 2) Вычислите отвосительную погрепиность функции $V = (4/3) \pi R^3$ при R = 300 и dR = 0.3.
- 3) Найдите приближенное значение приращения функции $y=x^3-x^2$ при x=2 и $\Delta x=0.01$.
- 4) Найдите приближенное значение функции $f(x)=x^3-x^2+x-3$ при x=3.03.
- Вычислите приближенное значение величины 1/0,998.

И вариант

- Вычислите дифференциал функции y=ln tg 2x при x=π/8 и dx=0,03.
- 2) Вычислите относительную погрениюсть функции $y = x^3$ при x = 750и dx = 0.5.
- 3) Найдите приближенное значение приращения функции $y = 2\sqrt{x} + 4$ при x = 25 и $\Delta x = 0.01$.
- 4) Найдите приближенное значение функции $f(x) = 3x^3 x^2 + 5x 1$ при x = 3.02.
- Вычислите приближенное значение величины (1,02)⁷.

Расчетное задание 10 Текст задания

I вариант

Найдите частные решения дифференциальных уравнений:

1)
$$4xy dx = (x^2 + 1) dy$$
;
 $y = 4$ npa $x = 1$.

2)
$$y'+4y-2=0$$
;
 $y=1.5$ npu $x=0$.

3)
$$\frac{d^2s}{dt^2} = 6t - 4$$
; $s = 5$ m
 $\frac{ds}{dt} = 6$ mps $t = 2$.

4)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0;$$

$$y=5$$
 и $\frac{dy}{dx}=0$ при $x=0$.

$$5) \frac{d^2y}{dx^2} - 4 \frac{dy}{dx} + 13 = 0;$$

$$y=2$$
 и $\frac{dy}{dx}=1$ при $x=0$.

II вариант

Найдите частные решения дифференциальных уравнений:

1)
$$(x^2+1) dy = xy dx$$
;
 $y=2 \text{ при } x=\sqrt{3}$.

2)
$$y' = 4y - 2$$
; $y = 1.5$ πpm $x = 0$.

3)
$$\frac{d^2s}{dt^2} = 6t + 8$$
; $s = 12$ H $\frac{ds}{dt} = -5$

при
$$t = -2$$
.

4)
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$$
;

$$y=3$$
 x $\frac{dy}{dx}=0$ npx $x=0$.

5)
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 13 = 0$$
;

$$y=3$$
 и $\frac{dy}{dx}=11$ при $x=0$.

Расчетное задание 11

Текст задания

Используя соответствующие ряды, выполните вычисления с заданной степенью точности.

43. C точностью до 0,0001: 1)
$$\int_{0}^{1} \sin x^{3} dx$$
; 2) $\int_{0}^{1} \cos x^{2} dx$.

44. C точностью до 0,0001: 1)
$$\int_{0}^{0.2} \frac{\sin x}{x} dx$$
;
$$\int_{0}^{1} \frac{\sin \frac{x}{4}}{x} dx$$
.

45. С точностью до 0,001: 1)
$$\int_{0}^{0.2} \sqrt{1+x^2} dx$$
; 2) $\int_{0}^{0.5} \sqrt{1+x^3} dx$.

46. C точностью до 0,0001: 1)
$$\int_{0}^{0.5} \frac{dx}{\sqrt{1+x^3}}$$
 2)
$$\int_{0}^{0.25} \frac{dx}{\sqrt{1+x^3}}$$
.

47. C точностью до 0,001: 1)
$$\int_{0}^{0.5} xe^{-x} dx$$
; 2) $\int_{0}^{1} e^{-x^2} dx$.

6. КОНТРОЛЬНО – ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ

ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

ПЕРЕЧЕНЬ

вопросов для проведения промежуточной аттестации по дисциплине «Элементы высшей математики»

- 1. Понятие Матрицы. Действия над матрицами. Определитель матрицы. Обратная матрица. Ранг матрицы
- 2. Основные понятия системы линейных уравнений. Правило решения произвольной системы линейных уравнений. Решение системы линейных уравнений методом Гаусса
- 3. Числовые последовательности. Предел функции. Свойства пределов. Замечательные пределы, раскрытие неопределенностей. Односторонние пределы, классификация точек разрыва
- 4. Определение вектора. Операции над векторами, их свойства. Вычисление скалярного, смешанного, векторного произведения векторов. Приложения скалярного, смешанного, векторного произведения векторов
- 5. Уравнение прямой на плоскости. Угол между прямыми. Расстояние от точки до прямой
- 6. Линии второго порядка на плоскости
- 7. Определение производной. Производные и дифференциалы высших порядков. Полное исследование функции. Построение графиков
- 8. Дифференцируемость функции нескольких переменных. Производные высших порядков и дифференциалы высших порядков
- 9. Предел и непрерывность функции нескольких переменных. Частные производные. Дифференцируемость функций нескольких переменных. Производные высших порядков и дифференциалы высших порядков.
- 10. Неопределенный и определенный интеграл и его свойства Несобственные интегралы с бесконечными пределами интегрирования. Вычисление определенных интегралов. Применение определенных интегралов
- 11. Двойные интегралы и их свойства. Повторные интегралы. Приложение двойных интегралов
- 12. Определение числового ряда. Свойства рядов. Исследование сходимости рядов. Функциональные последовательности и ряды
- 13. Общее и частное решение дифференциальных уравнений.
- 14. Дифференциальные уравнения 2-го порядка. Решение дифференциальных уравнений 2-го порядка
- 15. Определение комплексного числа. Формы записи комплексных чисел. Геометрическое изображение комплексных чисел.

Вариант 1

Задание 1. (выберете один вариант ответа)

Значение предела
$$\lim_{\chi \to \infty} \frac{2\chi^2 - 3\chi + 5}{4 - \chi + 3\chi^2}$$
 равно..

Варианты ответов:

A) 1 B)
$$\frac{5}{4}$$
 C) $\frac{2}{3}$ D) 3

Задание 2. (выберете один вариант ответа)

Значение предела $\lim_{\chi \to 2} \frac{(\chi - 3)(2 - \chi)}{4 - \chi^2}$ равно...

Варианты ответов:

A)
$$\infty$$
 B) $-\frac{1}{4}$ C) $\frac{1}{6}$ D) 0

$$\frac{1}{\epsilon}$$
 D)

Задание 3. (выберете один вариант ответа)

Производная функции $\gamma = \sqrt{\chi} * e^{\chi}$ имеет вид....

A)
$$\gamma^1 = \frac{e^{\chi}}{2\sqrt{\chi}}$$

B)
$$\gamma^1 = 2\sqrt{\chi} + e^{\lambda}$$

A)
$$\gamma^1 = \frac{e^{\chi}}{2\sqrt{\chi}}$$
 B) $\gamma^1 = 2\sqrt{\chi} + e^{\chi}$ C) $\gamma^1 = e^{\chi}$ D) $\gamma^1 = \frac{e^{\chi}}{2\sqrt{\chi}} + e^{\chi}\sqrt{\chi}$

Задание 4. (выберете один вариант ответа)

Производная функции $\gamma = 2 \arccos x$ в точке $\chi_0 = 0$ равна.... (

Варианты ответов:

C)
$$\frac{1}{2}$$

B) 2 C)
$$\frac{1}{2}$$
 D) $-\frac{1}{2}$

Задание 5. (выберете один вариант ответа)

Производная функции $\gamma = \sin 5\chi$ имеет вид.....

Варианты ответов:

A)
$$\gamma^1 = \cos 5\chi$$

B)
$$\gamma^1 = 5\cos \chi$$

C)
$$\gamma^1 = 5\sin \chi$$

A)
$$\gamma^1 = \cos 5\chi$$
 B) $\gamma^1 = 5\cos \chi$ C) $\gamma^1 = 5\sin \chi$ D) $\gamma^1 = 5\cos 5\chi$

Задание 6. (выберите один вариант ответа)

Вторая производная функции $\gamma = 3\chi^2 + 2\chi - 1$ имеет вид...

Варианты ответов:

A)
$$v^{11} = 0$$

B)
$$\gamma^{11} =$$

A)
$$\gamma^{11} = 0$$
 B) $\gamma^{11} = 8$ C) $\gamma^{11} = 6$ D) $\gamma^{11} = 4$

Задание 7. (выберите один вариант ответа)

Угловой коэффициент касательной к графику функции $\gamma = \chi^3 - 2\chi^2 + \chi$ в точке $\chi_0 = 0$ равен.....

Варианты ответов:

Задание 8. (выберите один вариант ответа)

Точкой минимума функции $\gamma = \chi^3 - 3\chi$ является.....

Варианты ответов:

B)
$$\sqrt{3}$$

C) 1 D)
$$-\sqrt{3}$$

Задание 9. (выберете один вариант ответа)

Абсциссой точки перегиба функции $\gamma = \chi^3 - 2\chi - 4$ является.....

Варианты ответов:

B)
$$\frac{2}{3}$$

B)
$$\frac{2}{3}$$
 C) 6 D) $\frac{1}{3}$

Задание 10. (выберете варианты согласно тексту задания)

Последовательность задана формулой общего члена $a_n = \frac{(-1)^h * 2^n}{n+1}$. Расположите элементы

последовательности в порядке возрастания их порядковых номеров.

Варианты ответов: (3-1, 3-2)

A)
$$\frac{16}{5}$$

B)
$$\frac{4}{3}$$
 C) -2

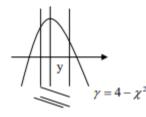
Задание 11. (выберете один вариант ответа)

Множество всех первообразных функции $\gamma = 2\chi$ имеет вид....

Варианты ответов:

B)
$$2\chi^{2} + c$$

C)
$$\chi^2 + c$$


A) 2 B) $2\chi^2 + c$ C) $\chi^2 + c$ D) χ^2 Задание 12. (выберете один вариант ответа)

Определённый интеграл $\int 4\chi^3 d\chi$ равен.....

Варианты ответов:

Задание 13. (выберете один вариант ответа)

Площадь криволинейной трапеции S определяется интегралом....

A)
$$\int_{-2}^{2} (4 - \chi^2) d\chi$$
 B)
$$\int_{-1}^{1} (4 - \chi^2) d\chi$$

Варианты ответов:

$$\gamma = 4 - \chi^{2}$$
A)
$$\int_{-2}^{2} (4 - \chi^{2}) d\chi$$
B)
$$\int_{-1}^{1} (4 - \chi^{2}) d\chi$$
C)
$$\int_{-2}^{1} (4 - \chi^{2}) d\chi$$
D)
$$\int_{-1}^{2} (4 - \chi^{2}) d\chi$$

Вариант 2

Задание 1. (выберите один вариант ответа)

Значение предела $\lim_{\chi \to \infty} \frac{3\chi^2 - \chi + 1}{3 - 2\chi + \chi^2}$ равно.....

Варианты ответов:

A)
$$\frac{1}{2}$$

B) 3 C)
$$\frac{1}{3}$$

Задание 2. (выберете один вариант ответа)

Значение предела $\lim_{\chi \to 5} \frac{\chi^2 - 25}{3\chi - 15}$ равно.....

Варианты ответов:

B)
$$\frac{5}{3}$$
 C) -5 D) $\frac{10}{3}$

Задание 3. (выберете один вариант ответа)

Производная функция $\gamma = \chi * 2^{\chi}$ имеет вид....

A)
$$\gamma^1 = 2^{\chi}$$
 B) $\gamma^1 = 2^{\chi} + \chi * 2^{\chi} \ln 2$ C) $\gamma^1 = 2^{\chi} \ln 2$ D) $\gamma^1 = 2^{\chi} + 2^{\chi} * \chi$

Задание 4. (выберете один вариант ответа)

Производная функции $\gamma = 3 \ln \chi$ в точке $\chi_0 = 3$ равна....

Варианты ответа:

A) 1 B) 3 C)
$$\frac{1}{3}$$
 D) 9

Задание 5. (выберете один вариант ответа)

Производная функции $\gamma = \cos 3\chi$ имеет вид....

Варианты ответа:

A)
$$\gamma^1 = -\sin 3\chi$$
 B) $\gamma^1 = 3\sin \chi$ C) $\gamma^1 = -3\sin \chi$ D) $\gamma^1 = -3\sin 3\chi$

Задание 6. (выберете один вариант ответа)

Вторая производная функции $\gamma = 2 - 3\chi - 5\chi^2$ имеет вид....

Варианты ответов:

A)
$$\gamma^{11} = -6$$
 B) $\gamma^{11} = -10\chi$ C) $\gamma^{11} = -10$ D) $\gamma^{11} = -6\chi$

Задание 7. (выберете один вариант ответа)

Угловой коэффициент касательной к графику функции $\gamma = 3 - 2\chi^2 - \chi^3$ в точке $\chi_0 = 1$ равен....

Задание 8. (выберете один вариант ответа)

Точкой максимума функции $\gamma = \frac{1}{3} \chi^3 - \chi$ является...

Варианты ответов:

A) -1 B) 0 C) 1 D)
$$\sqrt{3}$$

Задание 9. (выберете один вариант ответа)

Абсциссой точки перегиба графика функции $\gamma = 6\chi^2 - \chi^3$ является....

Варианты ответов:

A)
$$\frac{1}{2}$$
 B) -2 C) $-\frac{1}{2}$ D) 2

Задание 10. (выберете варианты согласно тексту задания)

Последовательность задана формулой общего члена $bn = \frac{n^2}{n^2 + 1}$. Расположите элементы последовательности в порядке возрастания их порядковых номеров.

Варианты ответов:

A)
$$\frac{4}{5}$$
 B) $\frac{16}{17}$ C) $\frac{1}{2}$ D) $\frac{9}{10}$

Задание 11. (выберете один вариант ответа)

Множество всех первообразных функций $\gamma = 3\chi^2$ имеет вид.....

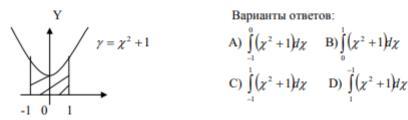
Варианты ответов:

$$B)3\chi^2 + c$$

C)
$$\chi^3 + c$$

B)
$$3\chi^2 + c$$
 C) $\chi^3 + c$ D) $3\chi^3 + c$

Задание 12. (выберете один вариант ответа)


Определённый интеграл $\int_{-\infty}^{4} \frac{2d\chi}{\sqrt{\chi}}$ равен....

Варианты ответов:

C)
$$\frac{1}{2}$$
 D) 2

Задание 13. (выберете один вариант ответа)

Площадь криволинейной трапеции S определяется интегралом....

A)
$$\int_{0}^{0} (\chi^{2} + 1) d\chi$$

C)
$$\int_{-1}^{1} (\chi^2 + 1) d\chi$$

D)
$$\int_{1}^{-1} (\chi^2 + 1) d\chi$$

Вариант 3

Задание 1. (выберете один вариант ответа)

Значения предела
$$\lim_{\chi \to \infty} \frac{4\chi^3 - \chi^2 + 1}{1 + 3\chi^2 - 2\chi^3}$$
 равно....

Варианты ответов:

C)
$$-\frac{1}{3}$$
 D) -5

Задание 2. (выберете один вариант ответа) Значение предела $\lim_{\chi \to 3} \frac{(\chi - 3)(\chi + 2)}{\chi^2 - 9}$ равно....

Варианты ответов:

A)
$$\frac{2}{3}$$

B) 0 C)
$$\frac{5}{6}$$

Задание 3. (выберете один вариант ответа)

Производная функции $\gamma = \chi^2 \ln \chi$ имеет вид....

Варианты ответов:

A)
$$\gamma^1 = \gamma$$

B)
$$\gamma^1 = 2\chi \ln \chi + \chi$$

A)
$$\gamma^1 = \chi$$
 B) $\gamma^1 = 2\chi \ln \chi + \chi$ C) $\gamma^1 = 2\chi + \frac{1}{\chi}$ D) $\gamma^1 = 2 \ln \chi$

D)
$$\gamma^1 = 2 \ln \chi$$

Задание 4. (выберете один вариант ответа)

Производная функции $\gamma = arctg\chi$ в точке $\chi_0 = -1$ равна.....

Варианты ответов:

$$C)\frac{1}{2}$$

Задание 5. (выберете один вариант ответа)

Производная функции $\gamma = tg 2\chi$ имеет вид.....

A)
$$\frac{2}{\cos^2 \chi}$$

A)
$$\frac{2}{\cos^2 \chi}$$
 B) $\frac{2}{\cos^2 2\chi}$ C) $\cos^2 2\chi$ D) $\frac{1}{\cos^2 2\chi}$

D)
$$\frac{1}{\cos^2 2\chi}$$

Задание 6. (выберете один вариант ответа)

Вторая производная $\gamma = \frac{1}{2}\chi^2 - \chi + 2$ имеет вид....

Варианты ответов:

A)
$$\gamma^{11} =$$

A)
$$\gamma^{11} = \chi$$
 B) $\gamma^{11} = 2$ C) $\gamma^{11} = \chi - 1$ D) $\gamma^{11} = 1$

C)
$$\gamma^{11} = \chi - 1$$

D)
$$v^{11} = 1$$

Задание 7. (выберете один вариант ответа)

Угловой коэффициент касательной к графику функции $\gamma = 4\chi^3 - 3\chi^2 + 5$ в точке $\chi_0 = -1$ равен...

Варианты ответов:

A) 8

Задание 8. (выберете один вариант ответа)

Точкой максимума функции $\gamma = -\frac{1}{3}\chi^3 + 4\chi^2$ является.....

Варианты ответов:

A) 0

Задание 9. (выберете один вариант ответа)

Абсциссой точки перегиба функции $\gamma = \chi^3 - \chi + 1$ является....

Варианты ответов:

A) -6

C) 0 D)
$$\frac{1}{6}$$

Задание 10. (выберете варианты ответа согласно тексту)

Последовательность задана формулой общего члена $\chi_n = \frac{3n+5}{2n+1}$. Расположите элементы последовательности в порядке возрастания их порядковых номеров.

Варианты ответов:

B)
$$\frac{8}{3}$$

C)
$$\frac{17}{9}$$

B)
$$\frac{8}{3}$$
 C) $\frac{17}{9}$ D) $\frac{11}{5}$

Задание 11. (выберете один вариант ответа)

Множество всех первообразных функций $\gamma = \frac{2}{\gamma}$ имеет вид....

Варианты ответов:

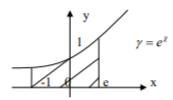
A)
$$\frac{2}{v^2} + c$$

B)
$$\ln |\chi| + c$$

A)
$$\frac{2}{\chi^2} + c$$
 B) $\ln|\chi| + c$ C) $-\frac{2}{\chi^2} + c$ D) $2\ln|\chi| + c$

D)
$$2\ln|\chi|$$
+

Задание 12. (выберете один вариант ответа)


Определённый интеграл $\int (e^x + 1)dx$ равен.....

Варианты ответов:

D)
$$e-1$$

Задание 13. (выберете один вариант ответа)

Площадь криволинейной трапеции S определяется интегралом.

A)
$$\int_{0}^{1} e^{x} dx$$
 B)
$$\int_{-1}^{1} e^{x} dx$$
 C)
$$\int_{0}^{e} e^{x} d\chi$$
 D)
$$\int_{0}^{e} e^{x} d\chi$$

B)
$$\int_{-1}^{1} e^{x} dx$$

C)
$$\int_{0}^{\epsilon} e^{\chi} d\chi$$

D)
$$\int_{0}^{c} e^{x} dx$$

Вариант 4

Задание 1. (выберете один вариант ответа)

Значение предела $\lim_{\chi \to \infty} \frac{5 - 2\chi^2 + 7\chi^3}{4\chi^3 + \chi^2 - 1}$ равно....

Варианты ответов:

B) -2 C)
$$\frac{7}{4}$$
 D) $\frac{5}{4}$

D)
$$\frac{5}{4}$$

Задание 2. (выберете один вариант ответа) Значение предела $\lim_{\chi \to -1} \frac{(\chi + 1)(\chi - 2)}{1 - \chi^2}$ равно...

Варианты ответов:

Задание 3. (выберете один вариант ответа)

Производная функции $\gamma = 3^{\chi} * \chi$ имеет вид....

Варианты ответов:

A)
$$\gamma^1 = 3^{\chi} \ln 3$$

B)
$$\gamma^1 = 3^{\chi} \chi \ln x$$

C)
$$\gamma^1 = 3^{\chi} * \chi + 3^{\chi}$$

B)
$$\gamma^1 = 3^{\chi} \chi \ln 3$$
 C) $\gamma^1 = 3^{\chi} * \chi + 3^{\chi}$ D) $\gamma^1 = 3^{\chi} + 3^{\chi} * \chi * \ln 3$

Задание 4. (выберете один вариант ответа)

Производная функции $\gamma = arcctg\chi$ в точке $\chi_0 = -1$ равна...

Варианты ответов:

A)
$$-\frac{1}{2}$$

B)
$$\frac{1}{2}$$

Задание 5. (выберете один вариант ответа)

Производная функции $\gamma = ctg \, 0.5 \chi$ имеет вид....

A)
$$\gamma^{1} = -\frac{0.5}{\sin^{2} \gamma}$$

B)
$$\gamma^1 = \frac{-0.5}{\sin^2 0.5 \chi}$$

A)
$$\gamma^1 = -\frac{0.5}{\sin^2 \chi}$$
 B) $\gamma^1 = \frac{-0.5}{\sin^2 0.5 \chi}$ C) $\gamma^1 = \frac{0.5}{\sin^2 0.5 \chi}$ D) $\gamma^1 = \frac{1}{\sin^2 \chi}$

D)
$$\gamma^1 = \frac{1}{\sin^2 \chi}$$

Задание 6. (выберете один вариант ответа)

Вторая производная функции $\gamma = 3 - 2\chi - \frac{1}{2}\chi^2$ имеет вид.....

Варианты ответов:

A)
$$\gamma^{11} = 2$$

B)
$$\gamma^{11} =$$

C)
$$\gamma^{11} = -1$$

C)
$$\gamma^{11} = -1$$
 D) $\gamma^{11} = 0$

Задание 7. (выберете один вариант ответа)

Угловой коэффициент касательной к графику функции $\gamma = 2\chi^3 + \chi - 3$ в точке $\chi_0 = -1$

Варианты ответов:

Задание 8. (выберете один вариант ответа)

Точкой максимума функции $\gamma = \chi^4 - 2\chi^2$ является....

Варианты ответов:

C) 6

Задание 9. (выберете один вариант ответа)

Абсциссой точки перегиба функции $\gamma = \frac{1}{3} \chi^3 - 3 \chi^2 + 8 \chi$ является....

Варианты ответа:

Задание 10. (выберете варианты ответа согласно тексту)

Последовательность задана формулой общего члена $a_n = \frac{n(n+1)}{3}$. Расположите элементы последовательности в порядке возрастания их порядковых номеров.

Варианты ответов:

B)
$$\frac{20}{3}$$

C) 4 D)
$$\frac{2}{3}$$

Задание 11. (выберете один вариант ответа)

Множество всех первообразных функций $\gamma = 3^{\chi}$ имеет вид....

Варианты ответов:

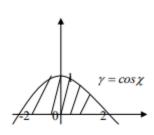
A)
$$3^{x} + 6$$

B)
$$\frac{3^{\chi}}{\ln 3}$$

C)
$$\frac{3^{x}}{\ln 3} + 6$$

A)
$$3^{\chi} + c$$
 B) $\frac{3^{\chi}}{\ln 3}$ C) $\frac{3^{\chi}}{\ln 3} + c$ D) $3^{\chi} \ln 3 + c$

Задание 12. (выберете один вариант ответа)


Определённый интеграл $\int_{-1}^{1} 4\chi^3 dx$ равен....

Варианты ответов:

A)
$$3\frac{3}{4}$$

Задание 13. (выберете один вариант ответа)

Площадь криволинейной трапеции S определяется интегралом....

A)
$$\int_{0}^{1} \cos \chi d\chi$$
 B)
$$\int_{0}^{\pi} \cos \chi d\chi$$
 C)
$$\int_{-\pi}^{\pi} \cos \chi d\chi$$
 D)
$$\int_{-\pi}^{0} \cos \chi d\chi$$

C)
$$\int_{-\pi}^{\frac{\pi}{2}} \cos \chi d\chi$$

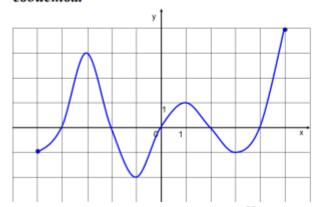
D)
$$\int_{\frac{-\pi}{2}}^{0} \cos \chi d\chi$$

ПЕРЕЧЕНЬ

практических заданий для проведения промежуточной аттестации по дисциплине «Элементы высшей математики»

В цепи сила тока I = 10A, а амперметр, включенный в эту цепь, показывает

 $I_{uzu} = 10{,}14A$. Найти относительную погрешность измерения.


В результате измерений получили, что длина карандаша равна 16см, а длина комнаты равна 730см. каково качество обоих измерений, если считать абсолютную погрешность равной

- 2.
- Число 0,2473 округлить а) до тысячных, б) до сотых, в) до десятых. Даны два комплексных числа $z_1 = 4 + 5i$ и $z_2 = 6 - 9i$.
- Найти $z_1 + z_2$, $z_1 z_2$, $z_1 \cdot z_2$, z_1 / z_2 4
- Задано комплексное число z=1-i . Найти |z| и $-\arg z$. 5

Перевести в тригонометрическую и показательную форму компл.

число $z = \sqrt{3} + i$. 6.

Установить по графику функции y=f(x) ее характерные свойства.

7.

 $\lim_{x\to 1} \frac{x-3}{x^2+x-4}$. Найти предел 8.

Найти предел

 $\lim_{x\to 4}\frac{x-3}{x-4}.$

Найти предел $\lim_{x\to 2} \frac{x^2-4}{x^2+x-6}$.

10.

9

Найти предел $\lim_{x\to\infty} \frac{1-6x+3x^3}{1+5x+2x^3}$ 11. _

Вычислить предел: $\lim_{x\to 0} \frac{\sin 8x}{tg 5x}$

12. ____

Вычислить предел: $\lim_{x \to \infty} \left(\frac{9x - 4}{9x + 2} \right)^{5x - 3}$

13.

Исследовать функцию на непрерывность

Для матриц A и B найти матрицы $C = 3 \cdot A + 4 \cdot B$ и $D = A \cdot B$.

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 4 & 0 \\ 8 & 7 & 5 \end{pmatrix}$$

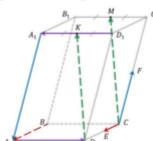
$$A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 4 & 0 \\ 8 & 7 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 6 & -2 & 9 \\ 10 & 3 & 5 \\ 0 & -4 & 1 \end{pmatrix}$$

16.

Вычислить определитель 3-го порядка по определению

$$\Delta = \begin{vmatrix} 1 & 2 & -1 \\ 0 & 3 & -3 \\ 4 & -2 & 5 \end{vmatrix}$$

17.


Найти общее решение системы:
$$\begin{cases} x + 7y - 5z = -9 \\ -2x + 5y - 6z = -8 \\ 4x + 2y - z = -12 \end{cases}$$

18.

Найти решение системы:
$$\begin{cases} 2x_1 + 3x_2 + 5x_3 = 12 \\ -x_1 + 4x_2 - 3x_3 = -7 \\ 2x_1 - 3x_2 + 7x_3 = 16 \end{cases}$$

19.

Пользуясь данными рисунка, укажите для пары векторов \overrightarrow{BA} и \overrightarrow{CE} правильный вариант ответа и пояснение:

- а) сонаправленные
- в) противоположно направленные
- г) противоположные

20. Даны точки A(1; 2), B(-1; 5), C(-1; 2)

Найти координаты и модули векторов \overline{AB} и \overline{CA}

Даны векторы $\bar{a}(5;-2)$ и $\bar{b}(-2;-1)$. Найти координаты вектора

 $22 \quad \overline{c} = 2\overline{a} - 6\overline{b}$

Даны векторы $\overline{a}(-3;6)$ и $\overline{b}(8;-3)$. Найдите их скалярное

23. произведение.

Составить уравнение прямой, проходящей через точку M(2,1) и

24 параллельной вектору $\bar{s} = (4,-5)$

Составить уравнение прямой, проходящей через точки A(1, -2) и

25. D(3,4)

Найти производные функций, используя правила дифференцирования и таблицу производных

26.

$$y = \frac{e^x}{5^x}$$

Найти производную сложной функции

27.a) $y = \cos(3x)$ 6) $y = (5x^4 - \cos x - 1)^2$

6)
$$y = (5x^4 - \cos x - 1)$$

28. Найти значение y'''(4), если $y = 5x^4 - 2x^2 + 3$.

Найти уравнение касательной к кривой $y(x) = x^2 + 4x + 5$ в точке с

29. абсциссой $x_0 = -3$.

Тело движется по закону $S(t) = 5t^3 + 4t^2 + 6t$. Определить его

30 скорость и ускорение в момент времени t=2 с

Найти промежутки монотонности, выпуклости, точки экстремума и

точки перегиба кривой
$$y = \frac{1}{3}x^3 - 3x^2 + 8x - 4$$

Исследовать функцию $y = x^3 + x^2 - x - 1$ и построить ее график.

Вычислить неопределенный интеграл непосредственным интегрированием, т.е. с помощью свойств интеграла и таблицы интегралов

$$\int \left(5x^2 - x + \frac{2}{x} - 8\right) dx$$

С помощью определенного интеграла найти площадь фигуры, ограниченной

34.
$$x$$
 диниями $y = 2x + 2$, $y = 0$, $x = -2$, $x = 1$

Является ли решением дифференциального уравнения y' + y = 1 + x

35.
$$\phi_{YHKUM} y(x) = e^{-x} + x$$
?

Найти общее решение диф.уравнения первого порядка с разделяющимися переменными.

$$\frac{y'}{e^x} = \frac{1}{y^2}$$

. Найти общее решение диф.уравнения второго порядка 37. a)
$$y'' + y' - 2y = 0$$
, б) $y'' + 8y' + 16 = 0$ в) $y'' - 2y + 5 = 0$

Используя признак Даламбера исследовать на сходимость

$$\sum_{n=1}^{\infty} \frac{10^n}{n!}$$
 38.

С помощью признака Лейбница исследовать на сходимость

знакочередующийся ряд
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{4n+7}$$

39.

Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{x^n}{15^n}$

$$_{40}$$
. Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{x^n}{15^n}$

Разложить функцию в ряд Маклорена
$$y = e^{5x}$$

Приложение 1. Ключи к контрольно – оценочным средствам для промежуточной аттестации

Ключи к тестам

№ варианта	1	2	3	4	5	6	7	8	9	10	11	12	13
1	C	В	D	Α	D	C	D	C	Α	DBCA	C	D	В
2	В	D	В	Α	D	С	Α	Α	D	CADB	C	A	C
3	Α	C	В	C	В	D	В	D	C	BDAC	D	A	C
4	C	В	D	A	В	С	A	D	В	DACB	С	В	C

Ключ к практическому заданию:							
1.	1,4%						
2.	$r_1 = 3.1\%, r_2 = 0.07\%$						
3.	а) 0,247; б) 0,25; в) 0,2.						
4.	10-4i: $-2+14i$						
	: 69 – 6 <i>i</i>						
	$=$ $-\frac{21}{117} + \frac{66}{117}i$						
5.	$: r = \sqrt{2} ; \qquad \varphi = -\frac{\pi}{4} .$						
6.	$z = 2\left(\cos\frac{\pi}{6} + i \cdot \sin\frac{\pi}{6}\right), z = 2 \cdot e^{\frac{\pi}{6}i}$						
7.	 D(f) = [-5; 5] (область определения). E(f) = [-2; 4] (область значений). Точки пересечения с осями координат с осью ОХ: (-4;0); (-2;0); (0;0); (2;0); (4;0) с осью ОУ: (0;0) Промежутки знакопостоянства функции y > 0 при x ∈ (-4;-2)∪(0;2)∪(4;5) y < 0 при x ∈ (-5;-4)∪(-2;0)∪(2;4) Промежутки возрастания и убывания функции. y npu x ∈ (-5;-3)∪(-1;1)∪(3;5) y npu x ∈ (-3;-1)∪(1;3) Точки экстремума x_{max} = -3 x_{max} = 1 x_{min} = -1 x_{min} = 3 Экстремумы y_{max} = 3 y_{max} = 1 y_{min} = -2 y_{min} = -1 Четность, нечетность. Функция общего вида, т.е. не является ни четной, ни нечетной. 						
8.	1						
9.	:∞.						
10.	0,8						
11.	1.5						
12.	1.6						
	10						
13.	$e^{-\frac{1}{3}}$.						

14.	Функция непрерывна при $x \in (-\infty; -3) \cup (-3; \infty)$. В т. $x = -3$ функция терпит разрыв I рода
15.	: \begin{pmatrix} 8 & 10 & 26 \\ 11 & 4 & 9 \end{pmatrix}
16.	$C = \begin{pmatrix} 30 & -11 & 45 \\ 43 & 24 & 20 \\ 24 & 5 & 19 \end{pmatrix} D = \begin{pmatrix} 2 & -19 & 16 \\ 46 & 10 & 29 \\ 118 & -15 & 112 \end{pmatrix}$
17.	-3
18.	x = -3, y = 2, z = 4
19.	x1 = 0, 0 , $x2 = 2$, $x3 = 2$
20.	. а) сонаправленные
21.	$\overrightarrow{AB} = (-2, 3); \overrightarrow{CA} = (-2, 0)$
22.	$\bar{c} = 2\bar{a} - 6\bar{b} = (22; 2)$
23.	-42
24.	$-5x-4y+14=0$ или $y=-\frac{5}{4}x+\frac{14}{4}$
25.	6x-2y-10=0 или $y=-3x-5$
26.	a) $15x^2 - \frac{24}{x^5}$; 6) $\frac{1}{x} \cdot \cos x - \ln x \cdot \sin x$; B) $\frac{e^x \cdot (1 - \ln 5)}{5^x}$
27.	a) $-3 \cdot \sin(3x)$; 6) $2 \cdot (5x^4 - \cos x - 1) \cdot (20x + \sin x)$
28.	480
29.	2x + y + 4 = 0.
30.	$v(2) = 82 \text{ M/c}, \ a(2) = 68 \text{ M/c}^2.$
31.	$v(2) = 82 \text{ M/C}, a(2) = 68 \text{ M/C}^2.$ $y \nearrow npu x \in (-\infty; 2) \cup (4; +\infty), y \searrow npu x \in (2; 4)$
	$x_{\text{max}} = 2$, $x_{\text{min}} = 4$ - точки экстремумов
	y выпукла вверх при $x \in (-\infty; 3);$ y выпукла вниз при $x \in (3; ∞)$
	x=3 - точка перегиба
32.	у
	$y = x^3 + x^2 - x - 1$
	$-\frac{3\zeta}{27}$ $-1\frac{5}{27}$
33.	$\frac{5}{3}x^3 - \frac{1}{2}x + 2\ln x - 8x + c$
	J 2
34.	5
35.	да
36.	$y = \sqrt[3]{3e^x + C}$

37.	a) $y = C_1 e^x + C_2 e^{-2x}$, 6) $y = C_1 e^{4x} + C_2 x e^{4x}$ B)
	$y = C_1 e^x \cos 2x + C_2 e^x \sin 2x$
38.	Ряд сходится
39.	Ряд сходится
40.	сходится при $x \in (-15, 15)$
41.	$e^{5x} = 1 + 5x + \frac{5^2 x^2}{2!} + \frac{5^3 x^3}{3!} + \dots + \frac{5^n x^n}{n!} + \dots$
42.	$x = \pi + \sum_{n=0}^{\infty} -\frac{2}{n} \sin nx$
43.	
44.	

Приложение 2. Ключи к контрольно - оценочным средствам для текущего контроля

Расчетное задание 1

I вариант. 1) $-\infty < x < 2$; 2) (3; 2) 3) -2; 1; 3; $-\infty < x < 0.8$ или $4 \le x < +\infty$; 5) (-8; -4), (-8; 3), (7; -4), (7; 3). И вариант. 1) $14.5 < x < +\infty$; 2) (4; 3); 3) -1; 1; 2; 4) $-2/3 \le x \le 5$; 5) (-4; -3), (4; 3).

Расчетное задание 2

I вариант. 1) \overrightarrow{AB} = (3; 7); 2) (4; 4); 3) M_1 (2; -2), M_2 (10; -10);

II вариант. 1) $\overrightarrow{AB} = 5\vec{i} + 9\vec{j}$; 2) C(4; -3); 3) C(8; -2);

Расчетное задание 3

вариант. 1) 15; 2) $9\sqrt{3}/2$; 3) 1/3; 4) $2e^2$; 5) 20 м/c^2 . II вариант. 1) -3; 2) $7\sqrt{2}$; 3) 1/2; 4) $2\sqrt{e}$; 5) 30 м/c^2 .

Расчетное задание 4

 Непрерывны на множестве R. 53. Непрерывны на множестве R. 54. Функции непрерывны.

Расчетное залание 5

I вариант. 1) 0; 2) -3; 3) -1; 4) $2\sqrt{2}$; 5) $\pm\pi/6+\pi k$. II вариант. 1) 8; 2) 2; 3) -1/2; 4) -2; 5) $\pi/4+\pi k/2$.

Расчетное задание 6

Расчетное задание 7

I варкант. 1) $2x^{3/2}/3 + 6x^{3/6}/5 + \ln|x| + C$; 2) $\arcsin(2x/3) - e^{-x} + C$; 3) $\ln|tg|x| + C$; 4) $y = x^2 - 4x - 4$; 5) $s = t^3 + 3t^2 - 4t - 4$. If варкант. 1) $\ln|x| - 6x^{3/6} + t/x + C$; 2) $\arcsin(x/\sqrt{3}) - e^{-x} + C$; 3) $(4/3)\sin^3 x - \sin x + C$; 4) $y = -\cos x + t$; 5) $s = t^3 + 3t^2 - 5t$.

Расчетное задание 8

1) 0.719;

2) 0,694; 3) 0,8424; 4) 0,7243; 5) 0,7241.

Расчетное задание 9

I вариант. 1) -0,02; 2) 0,3%; 3) 0,08;

4) 18,66; 5) 1,002. П варнант. 1) 0,12; 2) 0,2%; 3) 0,002; 4) 87,6; 5) 1,14.

Расчетное задание 10

I вариант. 1) $y=(x^2+1)^2$; 2) $y=e^{-4x}+0.5$; 3) $s=t^3-2t^2+2t+1$; 4) $y=2e^{-3x}+3e^{2x}$; 5) $y=e^{2x}(2\cos 3x-\sin 3x)$. II вариант. 1) $y^2=x^2+1$; 2) $y=e^{4x}+0.5$; 3) $s=t^3+4t^2-t+2$; 4) $y=e^{2x}+2e^{-x}$; 5) $y=e^{3x}(3\cos 2x+\sin 2x)$.

Расчетное задание 11

I вариант. 1) Ряд сходится на

всей числовой оси. 2) $1-\frac{x^2}{3^22!}+\frac{x^4}{3^4\cdot 4!}-...+(-1)^n\frac{x^{2n}}{3^{2n}(2n)!}+...;$ 3) $e^6\left[1-2\times\right]$

 $\times (x+3) + \frac{2^2}{2!}(x+3)^2 - \dots + \frac{(-2)^n}{n!}(x+3)^n + \dots] (-\infty < x < \infty)$. If Baphaht. 1) Pag

сходятся в промежутке $-2 \le x < 2$; 2) $5x - \frac{5^2x^2}{2} + \frac{5^3x^3}{3} - ... + (-1)^{n-1} \frac{5^nx^n}{n} +$

$$+ \dots \left(-\frac{1}{5} < x < \frac{1}{5} \right); \qquad 3) \qquad -\frac{1}{2} \left[1 - \sqrt{3} \left(x - \frac{\pi}{3} \right) - \frac{1}{2!} \left(x - \frac{\pi}{3} \right)^2 + \frac{\sqrt{3}}{3!} \left(x - \frac{\pi}{3} \right)^3 + \frac{1}{4!} \times \frac{1}{5!} \right]$$

 $\times \left(x - \frac{\pi}{3}\right)^2 + \dots$ 38. 1) 0,4384; 2) 0,6157; 3) 0,9613; 4) 0,6820. 39. 1) 0,0198;

2) 0,0953, 40, 1) 1,001; 2) 1,004; 3) 1,037, 43, 1) 0,2339; 2) 0,9045, 44, 1) 0,1996; 2) 0,2491, 45, 1) 0,201; 2) 0,508, 46, 1) 0,4926; 2) 0,2497, 47, 1) 0,090; 2) 0,747.

ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ К КОМПЛЕКТУ КОНТРОЛЬНО – ОЦЕНОЧНЫХ СРЕДСТВ

	Дополнения	и изменения	к комплекту	кос на		_ учебный го	од по
дисци	плине						
	В комплект В	ОС внесены сл	іедующие изме	нения:			
	Дополнения	и изменения	в комплекте	KOC o	бсуждены	на заседании	1 ЦК
« <u></u>		20г. (1	тротокол №).			
Предс	едатель ЦК		/		/		