ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ЧЕРЕМХОВСКИЙ ГОРНОТЕХНИЧЕСКИЙ КОЛЛЕДЖ ИМ. М.И. ЩАДОВА»

PACCMOTPEHO

на заседании ЦК «Информатики и ВТ» Протокол №<u>6</u> «<u>04</u>» февраля 20<u>25</u> г. Председатель: Н.С. Коровина

УТВЕРЖДАЮ

3ам. директора О.В. Папанова « 26» мая 2025 г.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по практическим занятиям студентов

учебной дисциплины

ОП.10 Численные методы

09.02.07 «Информационные системы и программирование»

Разработал: Окладникова Т.В.

СОДЕРЖАНИЕ

1.	ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	CTP. 3
2.	ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ	4
3.	СОДЕРЖАНИЕ ПРАКТИЧЕСКИХ ЗАНЯТИЙ	4
4.	ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ	20
5.	ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЁННЫХ В МЕТОДИЧЕСКИЕ УКАЗАНИЯ	22

1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Методические указания по практическим занятиям учебной дисциплины «**Численные методы»** составлены в соответствии с учебным планом и рабочей программы дисциплины по специальности *09.02.07 Информационные системы и программирование*

Цель проведения практических занятий: формирование практических умений, необходимых в последующей профессиональной и учебной деятельности.

Методические указания практических занятий являются частью учебнометодического комплекса по учебной дисциплине и содержат:

- тему занятия (согласно тематическому плану учебной дисциплины);
- цель;
- оборудование (материалы, программное обеспечение, оснащение, раздаточный материал и др.);
- методические указания (изучить краткий теоретический материал по теме практического занятия);
 - ход выполнения;
 - форму отчета.

В результате выполнения полного объема заданий практических занятий студент должен:

Базовая часть

В результате освоения дисциплины студент должен знать:

- методы хранения чисел в памяти электронно-вычислительной машины (далее ЭВМ) и действия над ними, оценку точности вычислений;
- методы решения основных математических задач интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ.

В результате освоения дисциплины студент должен уметь:

- использовать основные численные методы решения математических задач;
- выбирать оптимальный численный метод для решения поставленной задачи;
- давать математические характеристики точности исходной информации и оценивать точность полученного численного решения;
- разрабатывать алгоритмы и программы для решения вычислительных задач, учитывая необходимую точность получаемого результата.

Вариативная часть

В результате освоения дисциплины студент должен знать:

- численные методы решения уравнений;
- метод Эйлера;
- -метод Рунге Кутта;
- формулы Ньютона Котеса: методы прямоугольников, трапеций, парабол;

При проведении практических работ применяются следующие технологии и методы обучения: чтение с маркировкой, «фишбон», информационные технологии, ментальные карты и т.д.

Оценка выполнения практических занятий

«Отлично» - теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко.

«Хорошо» - теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками.

«Удовлетворительно» - теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки.

«**Неудовлетворительно**» - теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.

В соответствии с учебным планом и рабочей программы дисциплины «**Численные методы**» на практические (лабораторные) занятия отводится <u>18</u> **часов.**

2. ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

No	Тема практических занятий	Количество
п/п	-	часов
1	Практическое занятие№ 1	4
	Вычисление погрешностей результатов арифметических действий над	
	приближёнными числами.	
2	Практическое занятие№ 2	2
	Решение алгебраических и трансцендентных уравнений методом	
	половинного деления и методом итераций.	
3	Практическое занятие№ 3	2
	Решение алгебраических и трансцендентных уравнений методами хорд и	
	касательных.	
4	Практическое занятие№ 4	4
	Решение систем линейных уравнений приближёнными методами.	
5	Практическое занятие№ 5	2
	Составление интерполяционных формул Лагранжа, Ньютона, нахождение	
	интерполяционных многочленов сплайнами.	
6	Практическое занятие№ 6	2
	Вычисление интегралов методами численного интегрирования.	
7	Практическое занятие№ 7	2
	Применение численных методов для решения дифференциальных	
	уравнений.	

3. СОДЕРЖАНИЕ ПРАКТИЧЕСКИХ ЗАНЯТИЙ Практическое занятие№ 1

Тема: Вычисление погрешностей результатов арифметических действий над приближёнными числами.

Цель: научиться выполнять арифметические действия с приближенными числами; вычислять погрешности полученных результатов.

Оборудование: тетрадь, ручка

Методические указания: ознакомиться с теорией, выполнить задания

Ход выполнения:

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

Приближенное число заменяет собой число точное, которое чаще всего остается неизвестным.

Верной цифрой называют такую, погрешность которой не превышает половины единицы следующего разряда.

Сомнительная цифра – это цифра, следующая за верной.

Значащими цифрами данного числа называют цифры, начиная с первой слева, отличной от нуля, и кончая последней, за точность которой еще можно поручиться.

Погрешностью Δ_a приближенного значения а числа x называется разность $\Delta_a = x - a$, а модуль этой погрешностью называется абсолютной погрешностью.

Если $\Delta_a > 0$, то а взято с недостатком. Если $\Delta_a < 0$, то а взято с избытком.

Границей погрешности приближенного значения а числа х называется всякое неотрицательное число h_a , которое не меньше модуля погрешности: $|\Delta_a| \le h_a$.

Говорят, что приближение а приближает число x с точностью до h_a , если $\left|x-a\right| \leq h_a$, $a-h_a \leq x \leq a+h_a$, $x=a\pm h_a$.

Относительной погрешностью приближенного значения а числа х называется отношение

$$\omega_{\hat{o}} = \frac{\Delta_a}{a}, a \neq 0.$$

Квадратный корень из приближенного числа вычисляется по формуле: $\sqrt{x} = \frac{1}{2} \left(a + \frac{x}{a} \right)$, где $a \approx \sqrt{x}$.

Общая формула для вычисления корня n-ой степени: $\sqrt[n]{x} = \frac{1}{n} \bigg[(n-1)a + \frac{x}{a^{n-1}} \bigg]$, где $a \approx \sqrt[n]{x}$.

Примечание: выполнить задания согласно своему варианту

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

- 1. Изучить материал лекции.
- 2. Ознакомиться с заданиями практической работы.
- 3. Выполнить задания.
- 4. Оформить отчет по проделанной работе.

ЗАДАНИЯ ДЛЯ ВЫПОЛНЕНИЯ:

ЗАДАНИЕ 1 Вычислить сумму с указанным числом верных десятичных и запасных знаков.

Bap.	Сумма	Верн.	Зап.	Bap.	Сумма	Верн.	Зап.
		дес.	зн.			десят.	знаков
		3Н.				знаков	
I	$x = \frac{\pi}{3} + \frac{\pi}{4} + \sqrt{29} + \sqrt{43}$	2	1, 2	VI	$x = \frac{4\pi}{3} + e^{-1} + \sqrt{\frac{1}{2}} + \sqrt{11}$	2	1, 2
II	$x = \frac{\pi}{5} + \frac{e}{2} + \sqrt{55} + \sqrt{49}$	2	2, 3	VII	$x = \sqrt{2\pi} + tg1 + \lg e$	2	1, 2

III	$x = \pi + e^2 + \sqrt{53} + \sqrt{10}$	4	1, 2	VIII	$x = \frac{1}{2}\sqrt{\frac{\pi}{2}} + \frac{2}{\pi} + \sqrt{\frac{1}{3}}$	3	1, 2
IV	$x = \frac{\pi}{2} + \sqrt{e} + \lg e + \sqrt{67}$	4	1, 2	IX	$x = e^{-2} + \frac{\pi}{4} + \frac{1}{2\pi} + \sqrt{\frac{1}{5}}$	3	2, 3
V	$x = \frac{\pi}{3} + \sin 1 + e^{-1}$	2	3, 4	X	$x = \frac{1}{2\pi} + \frac{e}{\pi} + \sqrt{\frac{3}{7}}$	4	2, 3

ЗАДАНИЕ 2 Вычислить разность с указанным числом значащих цифр.

Вариант	Разность	Значащих цифр	Вариант	Разность	Значащих цифр
I	$x = \frac{22}{7} - \pi$	3	VI	$x = \sqrt{\frac{2}{\pi}} - \frac{\pi}{4}$	3
II	$x = \pi^2 - e$	4	VII	$x = \frac{1}{\sqrt{2\pi}} - \frac{1}{\sqrt{\pi}}$	3
Ш	$x = \pi - e^2$	2	VIII	$x = \sqrt{10} - \sqrt{\pi}$	4
IV	$x = 2\pi - 6tg1$	3	IX	$x = \frac{1}{2}\sqrt{\pi} - \sin 1$	4
V	$x = \sqrt{\pi} - \sqrt{3}$	2	X	$x = \frac{15}{19} - \frac{\pi}{4}$	5

ЗАДАНИЕ 3 Найти произведение приближенных чисел (2 способами). Определить, сколько значащих цифр имеет произведение, указать верные и сомнительные цифры.

Вариант	a	b	Вариант	a	b
I	$1,58 \pm 0,005$	$0,973 \pm 0,0005$	VI	$1,109 \pm 0,0005$	78,5184 ± 0,00005
II	$3,77 \pm 0,005$	$1,107 \pm 0,005$	VII	$4,371 \pm 0,0005$	$97,106 \pm 0,0005$
III	$0,\!108 \pm 0,\!0005$	$90,7 \pm 0,05$	VIII	$5,804 \pm 0,0005$	$105,84 \pm 0,005$
IV	10,1071 ± 0,00005	$0,13 \pm 0,005$	IX	$10,\!382 \pm 0,\!0005$	$64,42 \pm 0,005$
V	$0,015 \pm 0,0005$	11,1073 ± 0,00005	X	$0,15 \pm 0,005$	99,908 ± 0,0005

ЗАДАНИЕ 4 Вычислить и указать количество значащих цифр в результате, если исходные данные – приближенные числа, определенные с точностью до половины единицы последнего разряда.

Вариант	иант Задания Вариант Задания						
I	$(0,378)^3$	$\sqrt{0,0428}$	0,7342 : 0,3271	VI	$(2,6019)^4$	$\sqrt{10,586}$	6,78542 : 3,015
II	$(7,542)^2$	$\sqrt{17,5324}$	6,7 : 2,3784	VII	$(10,1013)^2$	$\sqrt{25,607}$	4,50189 : 2,78
III	$(5,689)^4$	$\sqrt{19,1805}$	27,61843 : 8,3	VIII	$(0,419)^3$	$\sqrt{28,1198}$	12,01809 : 6,001
IV	$(0,129)^2$	$\sqrt{21,594}$	25,98595 : 10,57	IX	$(0,5601)^2$	$\sqrt{15,0509}$	25,4207 : 8,704
V	$(3,586)^3$	$\sqrt{16,1018}$	8,92 : 4,5401	X	$(1,1809)^2$	$\sqrt{18,0011}$	31,560185 : 5,7894

ЗАЛАНИЕ 5 Вычислить с указанным числом значащих цифр.

<i>9144</i> 111111	5 Dbi inesii	arb c y Ku		ichowi sila	тащих цифр	,.			
Вар.	Пример	Зн. ц.	Приме р	Зн. ц.	Вар.	Пример	Зн. ц.	Пример	Зн. ц.
I	$\sqrt{3,78}$	6	¹⁰ √10	5	VI	$\sqrt{19,807}$	8	5√15	8

II	$\sqrt{5,906}$	5	⁶ √10	8	VII	$\sqrt{28,908}$	9	6√31	9
III	$\sqrt{11,685}$	4	8√15	7	VIII	$\sqrt{27,591}$	7	10√53	7
IV	$\sqrt{39,349}$	5	10√10	6	IX	$\sqrt{37,708}$	8	8√48	8
V	$\sqrt{25,694}$	6	√14	8	X	$\sqrt{48,8193}$	7	⁹ √91	5

ЗАДАНИЕ 6 Решить задачу на определение абсолютной (относительной) погрешности.

- I в. Укажите относительную погрешность, которая получится, если число 6,572 заменить числом 6,57.
- II в. Стороны параллелограмма равны 11 и 12 см, меньшая диагональ 13 см. В результате измерения линейкой большей диагонали получили 18,9 см. Какова относительная погрешность этого приближения?
- III в. В равнобедренном треугольнике длина основания равна 24 см, а боковой стороны 15 см. В результате измерения линейкой радиусов, вписанной и описанной окружностей, получили соответственно 4,1 и 12,3 см. Найдите относительные погрешности этих приближений.
- IV в. Скорость света в вакууме (299792,5 \pm 0,4) км/с, а скорость звука в воздухе (331,63 \pm 0,004) м/с. Что измерено с большей точностью?
- V в. Какая из характеристик самолета «АН-24» дана точнее: размах крыла 29,2 м; взлетная масса 21 т; собственная масса 13,9 т; практический потолок высоты 8,9 км?
- VI в. Округлите число 6,87 до десятых и найдите абсолютную и относительную погрешность.
- VII в. Найдите относительную погрешность приближенного значения a = 0.143 величины x = 1/7.
- VIII в. Докажите, что относительная погрешность приближенного числа не превосходит 10%, если в его записи две значащие цифры.
- IX в. Докажите, что относительная погрешность приближенного числа не превосходит 1%, если в его записи три значащие цифры.
- X в. Найдите границы значений грузоподъемности автомобиля ГАЗ-51A, если она равна 2,5 ($\pm 15\%$) т.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что такое погрешность?
- 2. В чем разница между абсолютной погрешностью и относительной?
- 3. Каким числом является результат действий с приближенными числами?
- 4. Почему при приближенных вычислениях погрешность может накапливаться? СОСТАВЛЕНИЕ ОТЧЕТА
- Номер и наименование практической работы
- Цель работы
- Номер выполняемого задания и подробное оформление

Форма отчета: отчет с решением, ответы на контрольные вопросы, защита

Практическое занятие№ 2

Тема: Решение алгебраических и трансцендентных уравнений методом половинного деления и методом итераций.

Цель: закрепить навыки решения уравнений приближенными методами.

Оборудование: тетрадь, ручка

Методические указания: ознакомиться с теорией, выполнить задания

Ход выполнения:

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

Число $x = x^*$ называется корнем уравнения f(x) = 0, если $f(x^*) = 0$.

Если функция f(x) определена и непрерывна на [a,b] и на концах отрезка принимает значения разных знаков, то на [a,b] существует хотя бы один корень.

При определении приближенных значений корней уравнения необходимо решить две задачи:

- 1. Отделить корень уравнения значит найти такой интервал, внутри которого находится один и только один корень данного уравнения.
 - 2. Уточнить корень с наперед заданным числом верных знаков.

Методы уточнения корней

Метод половинного деления

В основе метода лежит деление отрезка пополам, на котором определен корень уравнения. Итерационная формула имеет вид: $x^{(k)} = \frac{a+b}{2}$

Где

х – искомый корень уравнения

k – индекс приближенного значения корня

а и b – отрезок [a; b] на котором определен корень уравнения.

Отрезок [a; b] делится затем на два отрезка: [a; $x^{(k)}$] и [$x^{(k)}$; b], из которых выбирается тот, на концах которого функция принимает значения разных знаков.

Процесс деления продолжается до тех пор, пока длина последнего отрезка не станет |а- $|\mathbf{b}| \leq 2\varepsilon$, где ε – точность приближений.

Метод простой итерации.

Исходное уравнение f(x)=0 должно быть преобразовано к виду: $x=\varphi(x)$

Итерационная формула имеет вид: $x^{(k)} = \phi(x^{(k-1)})$

Выполнение итераций повторяют пока не будет выполнено $|x(k) - x(k-1)| \le \varepsilon$

СОДЕРЖАНИЕ РАБОТЫ:

- 1. Получить вариант у преподавателя.
- 2. Выполнить задания согласно своему варианту.

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

- 1. Изучить материал лекции.
- 2. Ознакомиться с заданиями практической работы.
- 3. Изучить методические указания.
- 4. Выполнить задания.
- 5. Оформить отчет по проделанной работе.

ЗАДАНИЯ ДЛЯ ВЫПОЛНЕНИЯ:

Задание 1. Отделить корни алгебраического уравнения графическим или аналитическим способом и уточнить корни методом половинного деления до 0,01.

Bap.	Задание	Bap.	Задание
I	$x^3 + 3x + 1 = 0$	VI	$x^4 + x - 1 = 0$
II	$x^3 - 3x^2 + 2,5 = 0$	VII	$4x^3 - 3x^2 + 1 = 0$
III	$x^4 - x^3 - 2x^2 + 3x = 0$	VIII	$x^3 + 3x^2 + 1 = 0$
IV	$x^3 + 1,7x^2 + 1,7 = 0$	IX	$x^3 + 3x^2 + 4x + 1 = 0$
V	$x^3 - 2x^2 + 7 = 0$	X	$2x^3 + 2x^2 - x - 3 = 0$

Задание 2. Отделить корни трансцендентного уравнения графическим способом и уточнить минимальный корень уравнения методом касательных до 0,001.

Вариант	Задание	Вариант	Задание
I	$x - \sin x - 1 = 0$	VI	tg x = -x
II	$5^x - 6x - 3 = 0$	VII	x tgx = 1
III	$2x^2 - 0.5^x - 3 = 0$	VIII	$2^{\sqrt{x}} + x^2 = 3$
IV	$\sqrt{x} = 1.5x - 3$	IX	$e^x = (1+x)^2$
V	$x^2 - \sin x = 0$	X	$tg x = -x^3$

Задание 3. Отделить корни трансцендентного уравнения графическим способом и уточнить

максимальный корень уравнения методом хорд до 0,001.

Вариант	Задание	Вариант	Задание
I	$5\sqrt{x} = x^2$	VI	$x^3 + 0.1x^2 + 0.4x - 1.2 = 0$
II	$x \lg (x+1) - 1 = 0$	VII	$sin(x+\pi)=x^2$
III	$x-2\sin x=0$	VIII	$\sin 3x = x$
IV	$x^2 - \cos x = 0$	IX	$\sqrt{x} + \sin x = 0$
V	$2^x = \sqrt{x+1}$	X	$(x-1)^2 = \sin x$

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что такое интервал изоляции корней?
- 2. Для какого типа уравнений применим метод половинного деления?
- 3. Какому условию должна удовлетворять функция на интервале, если нам известно, что корень уравнения находится на этом интервале?
- 4. В чем схожесть методов хорд и касательных?

СОСТАВЛЕНИЕ ОТЧЕТА

- 1. Номер и наименование практической работы
- 2. Цель работы
- 3. Номер выполняемого задания и подробное оформление

Форма отчета: отчет с решением, ответы на контрольные вопросы, защита

Практическая работа№ 3

Тема: Решение алгебраических и трансцендентных уравнений методами хорд и касательных.

Цель: закрепить навыки решения уравнений приближенными методами.

Оборудование: тетрадь, ручка

Методические указания: ознакомиться с теорией, выполнить задания

Ход выполнения:

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

Метод касательных (метод Ньютона)

Итерационная формула метода Ньютона имеет вид:
$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$$

В качестве начального приближения выбирается та из границ отрезка [a ; b] на которой выполняется условие: f(x) * f''(x) > 0

Выполнение итераций повторяют пока не будет выполнено $|x^{(k)}-x^{(k-1)}| \le \varepsilon$ $Memod\ xopd$

Итерационная формула имеет вид:
$$x^{(k)} = \frac{a * f(b) - b * f(a)}{f(b) - f(a)}$$

Отрезок [a ; b] делится затем на два отрезка: [a ; $\mathbf{x}^{(k)}$] и [$\mathbf{x}^{(k)}$; b]. Выбирается новый отрезок, в зависимости от условия:

- если f(a)>0 и $f(x^{(k)})>0$ или f(a)<0 и $f(x^{(k)})<0$ то отрезок $[x^{(k)};b]$
- если f(b)>0 и $f(x^{(k)})>0$ или f(b)<0 и $f(x^{(k)})<0$ то отрезок $[a;x^{(k)}]$

Выполнение итераций повторяют, пока не будет выполнено $|x^{(k)} - x^{(k-1)}| \le \epsilon$

Комбинированный метод хорд и касательных

Метод основан на построении схематического графика функции, определении интервалов его пересечения с осью абсцисс и последующим «сжатием» этого интервала при помощи строимых хорд и касательных к графику этой функции.

СОДЕРЖАНИЕ РАБОТЫ:

- 1. Получить вариант у преподавателя.
- 2. Выполнить задания согласно своему варианту.

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

- 1. Изучить материал лекции.
- 2. Ознакомиться с заданиями практической работы.
- 3. Изучить методические указания.
- 4. Выполнить задания.
- 5. Оформить отчет по проделанной работе.

ЗАДАНИЯ ДЛЯ ВЫПОЛНЕНИЯ:

Задание 1. Отделить корни алгебраического уравнения $ax^3 + bx^2 + cx + d = 0$ графическим или аналитическим способом и уточнить корни комбинированным методом хорд и касательных до 0,001.

Bap.	I	J		
	a	b	c	d
I	1	-0,2	0,4	-1,6
II	2	-0,1	0,3	-1,4
III	1	-0,3	0,1	-1,3
IV	2	-0,4	0,2	-1,1
V	1	-0,5	0,4	-1,2
VI	2	-0,1	0,2	-1,7
VII	2	-0,2	0,5	-1,9
VIII	1	-0,4	0,2	-1,5
IX	2	-0,5	0,3	-1,8
X	1	-0,1	0,4	-1,1

Задание 2. Отделить корни трансцендентного уравнения графическим способом и уточнить их методом итераций до 0,001.

Вариант	Задание	Вариант	Задание
I	$-0.5x = \cos 2x$	VI	$x = 2\sin 2x$
II	$-x/3 = \sin 3x$	VII	$-x = 5\sin 3x$
III	$-0.3x = \cos x$	VIII	$\cos 3x = 2x$
IV	$0.4x = \cos(0.5x)$	IX	$4\sin(1.5x)-2.8x=0$
V	$-x = 4\cos x$	X	cos(2,5x)-4x=0

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Если итерационный процесс сходится, то какую точку можно брать в качестве нулевого приближения?
- 2. Можно ли графическим методом найти точку нулевого приближения?
- 3. В чем преимущество использования комбинированного метода хорд и касательных перед отдельным использованием этих методов?

СОСТАВЛЕНИЕ ОТЧЕТА

- 1. Номер и наименование практической работы
- 2. Цель работы
- 3. Номер выполняемого задания и подробное оформление

Форма отчета: отчет с решением, ответы на контрольные вопросы, защита

Практическое занятие№ 4

Тема: Решение систем линейных уравнений приближёнными методами.

Цель: закрепить навыки решения систем алгебраических уравнений приближёнными методом.

Оборудование: тетрадь, ручка

Методические указания: ознакомиться с теорией, выполнить задания

Ход выполнения:

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

1. Метод Гаусса

Линейное уравнение называется *однородным*, если его свободный член равен нулю. Система линейных уравнений называется *однородной*, если все входящие в нее уравнения являются линейными однородными уравнениями.

Однородная система n линейных уравнений с n неизвестными имеет вид:

$$a_{11}x_{1} + a_{12}x_{2} + ... + a_{1n}x_{n} = 0;$$

$$a_{21}x_{1} + a_{22}x_{2} + ... + a_{2n}x_{n} = 0;$$

$$...$$

$$a_{n1}x_{1} + a_{n2}x_{2} + ... + a_{nn}x_{n} = 0.$$

Непосредственной проверкой убеждаемся в том, что однородная система линейных уравнений имеет нулевое решение: $x_1 = 0$, $x_2 = 0$, . . ., $x_n = 0$. Таким образом, однородная система линейных уравнений всегда совместна. Поэтому важно выяснить, при каких условиях она является определенной. Однородная система п линейных уравнений с п неизвестными имеет ненулевые решения тогда и только тогда, когда определитель ее равен нулю.

2. Метод итераций

При большом числе уравнений (~ 100 и более) прямые методы решения СЛАУ становятся труднореализуемыми на ЭВМ, прежде всего из-за сложности хранения и обработки матриц большой размерности.

Методы последовательных приближений, в которых при вычислении последующего приближения решения используются предыдущие, уже известные приближенные решения, называются итерационными.

В итерационных методах решение может быть вычислено за бесконечное число итераций (приближений), а поскольку это невозможно, то, останавливая процесс вычислений на какой-либо итерации, необходимо уметь оценивать погрешность метода итераций.

Приближенные методы решения систем линейных уравнений позволяют получать значения корней системы с заданной точностью в виде предела последовательности некоторых векторов. Процесс построения такой последовательности называется итерационным (повторяющимся).

Эффективность применения приближенных методов зависят от выбора начального вектора и быстроты сходимости процесса.

Пусть дана линейная система

3. Сравнение прямых и итерационных методов

Системы линейных алгебраических уравнений можно решать как с помощью прямых, так и итерационных методов. Для систем уравнений средней размерности чаще используют прямые методы.

Итерационные методы применяют главным образом для решения задач большой размерности, когда использование прямых методов невозможно из-за ограничений в доступной оперативной памяти ЭВМ или из-за необходимости выполнения чрезмерно большого числа арифметических операций. Большие системы уравнений, возникающие в основном в приложениях, как правило, являются разреженными. Методы исключения для систем с разреженными матрицами неудобны, например, тем, что при их использовании большое число нулевых элементов превращается в ненулевые и матрица теряет свойство разреженности. В противоположность им при использовании итерационных методов в ходе итерационного процесса матрица не меняется, и она, естественно, остается разреженной. Большая эффективность итерационных методов по сравнению с прямыми методами тесно связанна с возможностью существенного использования разреженности матриц.

СОДЕРЖАНИЕ РАБОТЫ:

- 1. Получить вариант у преподавателя.
- 2. Выполнить задания согласно своему варианту.

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

- 1. Изучить материал лекции.
- 2. Ознакомиться с заданиями практической работы.
- 3. Выполнить задания.
- 4. Ответить на контрольные вопросы.
- 5. Оформить отчет по проделанной работе.

ЗАДАНИЯ ДЛЯ ВЫПОЛНЕНИЯ:

Задание 1. Решить систему линейных алгебраических уравнений методом Гаусса:

задание 1. гешить систему линеиных алгеораических уравнении методом г аусса:					
1 вариант	$\begin{cases} 1,8x_1 + 2,7x_2 + 4x_3 + 3x_4 = 18,5 \\ 0,5x_1 - x_2 + 2x_3 + x_4 = 6 \\ 3,6x_1 + 4x_2 + 0,9x_3 - 2x_4 = 6,3 \\ x_1 - 3x_2 + 2,5x_3 + 4x_4 = 1,5 \end{cases}$	6 вариант	$\begin{cases} 2x_1 + 3x_2 - x_3 + x_4 = -3\\ 3x_1 - x_2 + 2x_3 + 4x_4 = 8\\ x_1 + x_2 + 3x_3 - 2x_4 = 6\\ -x_1 + 2x_2 + 3x_3 + 5x_4 = 3 \end{cases}$		
2 вариант	$\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 = 5\\ x_1 + 3x_2 + 5x_3 - 2x_4 = 3\\ x_1 + 5x_2 - 9x_3 + 8x_4 = 1\\ 5x_1 + 18x_2 + 4x_3 + 5x_4 = 12 \end{cases}$	7 вариант	$\begin{cases} 3x_1 + x_2 - x_3 + x_4 = 2\\ -3x_2 + x_3 + 2x_4 = 1\\ x_1 + 2x_3 + 3x_4 = 3\\ -x_1 + 2x_2 - 3x_3 - 3x_4 = -4 \end{cases}$		
3 вариант	$\begin{cases} 10x_1 + 3x_2 + 6x_3 + 2x_4 = 55,1 \\ 3,5x_1 + 2x_2 - x_3 + 4x_4 = 21,8 \\ -2x_1 - 3x_2 + 4x_3 + x_4 = 5,6 \\ 3x_1 + 4,4x_2 + 7,2x_3 + 1x_4 = 25,34 \end{cases}$	8 вариант	$\begin{cases} 2x_1 - 3x_2 + 3x_3 + 2x_4 - 3 = 0 \\ 6x_1 + 9x_2 - 2x_3 - x_4 + 4 = 0 \\ 10x_1 + 3x_2 - 3x_3 - 2x_4 - 3 = 0 \\ 8x_1 + 6x_2 + x_3 + 3x_4 + 7 = 0 \end{cases}$		
4 вариант	$\begin{cases} 5x_1 - 2.3x_2 + x_3 - x_4 = -19.7 \\ 4x_1 + 1.7x_2 - 2x_3 + 2x_4 = -8.3 \\ 3x_1 + 3.4x_2 + 3x_3 + x_4 = 6 \\ -10x_1 + 5.5x_2 - 2x_3 - 3x_4 = 19.8 \end{cases}$	9 вариант	$\begin{cases} 2x_1 - x_2 + x_3 - x_4 = 3\\ 4x_1 - 2x_2 - 2x_3 + 3x_4 = 2\\ 2x_1 - x_2 + 5x_3 - 6x_4 = 1\\ 2x_1 - x_2 - 3x_3 + 4x_4 = 5 \end{cases}$		
5 вариант	$\begin{cases} x_1 + 2x_2 + x_3 - x_4 = 1 \\ 2x_1 + x_2 - x_3 - 3x_4 = 1 \\ x_1 - 3x_2 + 2x_3 + 2x_4 = -2 \\ 3x_1 + x_2 + 3x_3 - 4x_4 = -3 \end{cases}$	10 вариант	$\begin{cases} x_2 + 2x_3 + 2x_4 = 7 \\ -x_1 - x_2 + x_3 + 5x_4 = 6 \\ 3x_1 + 2x_2 + x_3 = 4 \\ 2x_1 + 3x_3 - 2x_4 = 5 \end{cases}$		

Задание 2 Вычислить определитель методом Гаусса.

задание 2 вычислить определитель методом г аусса.					
1 вариант	$ \begin{bmatrix} 3 & 1 & -2 & 4 & 3 \\ 0 & 2 & 4 & -3 & 7 \\ 9 & 1 & -2 & 5 & 9 \\ -5 & 3 & -4 & 1 & 0 \\ 1 & -4 & 5 & -2 & 0 \end{bmatrix} $	6 вариант	$\begin{bmatrix} 1 & 2 & 5 & 4 & -1 \\ 2 & 4 & 3 & -1 & 4 \\ 0 & 5 & 0 & 3 & 7 \\ 10 & -2 & 4 & 7 & 6 \\ 3 & 7 & 5 & -2 & 3 \end{bmatrix}$		
2 вариант	5 3 2 -4 0 1 -2 1 10 -7 4 -1 2 7 2 1 -1 5 -3 -2 1 4 -6 1 1	7 вариант	4 4 -8 5 3 1 5 7 8 -1 4 8 3 5 7 9 -3 5 1 0 8 4 -5 2 1		

5 вариант	4 вариант	3 вариант
0 5 -5 2 4 -4 3 4 2 0 1 -1 2 -3 0 -1 5 1 -1 0 7 -8 0 1 2	$ \begin{bmatrix} 1 & 0 & 3 & -2 & 0 \\ 5 & 6 & -4 & 2 & -3 \\ 0 & 2 & 4 & 7 & -5 \\ 6 & -2 & 3 & -3 & 0 \\ 1 & 2 & -1 & 0 & -5 \end{bmatrix} $	$\begin{bmatrix} -1 & 2 & 6 & -5 & 0 \\ 3 & -4 & 8 & 9 & 2 \\ -2 & -1 & 3 & 7 & 1 \\ 1 & -1 & 2 & 3 & 8 \\ -5 & 5 & -6 & 1 & 0 \end{bmatrix}$
10 вариант	9 вариант	8 вариант
$ \begin{bmatrix} 2 & -2 & 4 & 5 & 3 \\ 0 & -1 & 3 & 7 & 5 \\ 6 & -4 & 2 & 1 & 0 \\ -1 & -2 & 3 & -4 & 5 \\ 0 & 2 & 1 & -1 & 3 \end{bmatrix} $	$\begin{bmatrix} -3 & 2 & -5 & 6 & 3 \\ 0 & 2 & 1 & -1 & 0 \\ 7 & 0 & 8 & -8 & 4 \\ -5 & -4 & 0 & 2 & 1 \\ 1 & -5 & 5 & -6 & 0 \end{bmatrix}$	2 3 -5 4 8 7 8 0 9 9 10 3 -2 1 5 3 4 5 -7 4 -2 1 0 4 -8

Задание 3 Найти обратную матрицу методом Гаусса.

задание з наити обратную матрицу методом гаусса.				
1 вариант	$ \left[\begin{array}{ccccc} 2 & 1 & 3 & -2 \\ 0 & 5 & 4 & 1 \\ -1 & 0 & 3 & -3 \\ 2 & 1 & 0 & -1 \end{array}\right] $	1 вариант	$ \left(\begin{array}{cccc} 1 & 2 & 4 & -5 \\ 2 & 4 & -2 & 1 \\ 5 & 8 & 9 & 3 \\ 3 & 7 & 1 & -1 \end{array}\right) $	
2 вариант	$ \begin{bmatrix} -1 & 2 & 5 & 4 \\ 0 & -1 & 3 & 4 \\ -2 & 2 & 6 & -4 \\ 1 & 0 & 2 & 4 \end{bmatrix} $	1 вариант	$ \left(\begin{array}{cccc} 2 & 4 & -1 & 5 \\ 0 & -2 & 4 & -3 \\ 3 & 0 & -4 & 5 \\ 5 & 7 & 8 & 9 \end{array}\right) $	
3 вариант	$ \left(\begin{array}{cccc} 2 & -2 & 3 & -4 \\ 4 & 0 & 1 & 2 \\ 3 & 5 & 6 & -2 \\ 1 & -3 & 0 & 4 \end{array}\right) $	1 вариант	$ \left(\begin{array}{cccc} 4 & 2 & 7 & -5 \\ 10 & 6 & 4 & 1 \\ 1 & 5 & -3 & 9 \\ 8 & 7 & 5 & 4 \end{array}\right) $	
4 вариант	$ \begin{bmatrix} -4 & 1 & -2 & 3 \\ 2 & 1 & -1 & 0 \\ -2 & 3 & 5 & 4 \\ -4 & 1 & -1 & 2 \end{bmatrix} $	1 вариант	$ \begin{bmatrix} -1 & 3 & -3 & 0 \\ 4 & 2 & 3 & 5 \\ -5 & 1 & -1 & 0 \\ 2 & 3 & -3 & 0 \end{bmatrix} $	
5 вариант	$ \left(\begin{array}{ccccc} 2 & -2 & 3 & 1 \\ 0 & 2 & 3 & 5 \\ -4 & 1 & -1 & -2 \\ 0 & -3 & 5 & 4 \end{array}\right) $	1 вариант	$ \left(\begin{array}{ccccc} 3 & -3 & 2 & -4 \\ 1 & -1 & 0 & 2 \\ -2 & 1 & 0 & -1 \\ 6 & 4 & -3 & 5 \end{array}\right) $	

Задание 4. Решить систему линейных алгебраических уравнений методами итераций и Зейделя. Сравнить полученные результаты. Проверить результаты любым точным методом:

1 B.
$$\begin{cases} 15x_1 + 2x_2 + 3x_3 + x_4 = 15 \\ x_1 - 15x_2 + 2x_3 + 3x_4 = 14 \\ x_1 - 4x_2 + 15x_3 + 4x_4 = 16 \\ 2x_1 + 8x_2 + x_3 - 15x_4 = 11 \end{cases}$$
2 B.
$$\begin{cases} 30x_1 - 2x_2 + 5x_3 + 7x_4 = 5 \\ 2x_1 + 30x_2 + 10x_3 + x_4 = -5 \\ x_1 + 4x_2 + 30x_3 + 3x_4 = -2 \\ 2x_1 + 8x_2 + 6x_3 + 30x_4 = -11 \end{cases}$$

3 B.
$$\begin{cases} 20x_1 + 3x_2 + 4x_3 + 8x_4 = 60 \\ 7x_1 + 20x_2 - 3x_3 + 5x_4 = 25 \\ -3x_1 + x_2 + 20x_3 - x_4 = -6 \\ -x_1 - x_2 + 4x_3 + 20x_4 = 24 \end{cases}$$
4 B.
$$\begin{cases} 20x_1 - x_2 + 5x_3 + 7x_4 = 5 \\ 2x_1 + 20x_2 + 10x_3 + x_4 = -5 \\ x_1 + 4x_2 + 20x_3 + 3x_4 = -2 \\ 2x_1 + 8x_2 + 6x_3 + 20x_4 = -11 \end{cases}$$
5 B.
$$\begin{cases} 15x_1 + 3x_2 + 4x_3 + 8x_4 = 60 \\ 7x_1 + 15x_2 - 3x_3 + 5x_4 = 25 \\ -3x_1 + x_2 + 15x_3 - x_4 = -6 \\ -2x_1 + x_2 + 3x_3 + x_4 = 15 \end{cases}$$
6 B.
$$\begin{cases} 15x_1 + 2x_2 + 3x_3 + x_4 = 15 \\ x_1 - 15x_2 + 2x_3 + 3x_4 = 14 \\ x_1 - 4x_2 + 15x_3 + 4x_4 = 16 \\ 2x_1 + 8x_2 + x_3 - 15x_4 = 11 \end{cases}$$
7 B.
$$\begin{cases} 10x_1 - x_2 + 2x_3 + 3x_4 = 14 \\ -x_1 + 4x_2 + 10x_3 + 2x_4 = -24 \\ 3x_1 + 2x_2 + 3x_3 + 10x_4 = 8 \end{cases}$$
8 B.
$$\begin{cases} 15x_1 - 3x_2 + 2x_3 + x_4 = -3 \\ -2x_1 + 15x_2 + 4x_3 + 5x_4 = 12 \\ x_1 - 4x_2 + 15x_3 - 7x_4 = -30 \\ -x_1 - 2x_2 + 7x_3 - 15x_4 = 8 \end{cases}$$
9 B.
$$\begin{cases} 20x_1 - 5x_2 + 6x_3 + x_4 = 0 \\ -3x_1 + 20x_2 - 7x_3 + 5x_4 = -25 \\ x_1 - x_2 + 20x_3 + 3x_4 = -6 \\ -4x_1 + 2x_2 + 5x_3 + 20x_4 = 25 \end{cases}$$

$$\begin{cases} 30x_1 + 4x_2 + 3x_3 + x_4 = 3 \\ 10x_1 + 30x_2 - 20x_3 + 4x_4 = 6 \\ -12x_1 + x_2 + 30x_3 + 6x_4 = -1 \\ 5x_1 + 7x_2 + 8x_3 + 30x_4 = 19 \end{cases}$$
10 B.
$$\begin{cases} 30x_1 + 4x_2 + 3x_3 + x_4 = 6 \\ -12x_1 + x_2 + 30x_3 + 6x_4 = -1 \\ 5x_1 + 7x_2 + 8x_3 + 30x_4 = 19 \end{cases}$$

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какие действия в методе Гаусса называют прямым ходом, а какие обратным?
- 2. Как проверить правильность нахождения обратной матрицы?

СОСТАВЛЕНИЕ ОТЧЕТА

- 1. Номер и наименование практической работы
- 2. Цель работы
- 3. Номер выполняемого задания и подробное оформление

Форма отчета: отчет с решением, ответы на контрольные вопросы, защита

Практическое занятие№ 5

Тема: Составление интерполяционных формул Лагранжа, Ньютона, нахождение интерполяционных многочленов сплайнами.

Цель: закрепить навыки составления интерполяционных многочленов Лагранжа, построения кубического сплайна.

Оборудование: тетрадь, ручка

Методические указания: ознакомиться с теорией, выполнить задания

Ход выполнения:

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

Задача интерполирования состоит в том, чтобы по значениям функции f(x) в некоторых точках отрезка восстановить ее значения в остальных точках отрезка.

Существует несколько подходов к решению задач интерполяции.

1. Метод Лагранжа. Основная идея этого метода состоит в том, чтобы, прежде всего, найти многочлен, который принимает значение 1 в одной узловой точке и 0 во всех других. Легко видеть, что функция

$$L_{j}(x) = \frac{(x - x_{1})(x - x_{2})...(x - x_{j-1})(x - x_{j+1})...(x - x_{n+1})}{(x_{j} - x_{1})(x_{j} - x_{2})...(x_{j} - x_{j-1})(x_{j} - x_{j+1})...(x_{j} - x_{n+1})}$$

является требуемым многочленом степени n; он равен 1, если $x=x_j$ и 0, когда $x=x_i$, $i\neq j$. Многочлен $L_j(x)\cdot y_j$ принимает значения y_i в i-й узловой точке и равен 0 во всех других $y(x)=\sum_{i}L_j(x)y_j$

узлах. Из этого следует, что есть многочлен степени n, проходящий через n+1 точку (x_i , y_i).

2. Метод Ньютона (метод разделённых разностей). Этот метод позволяет получить аппроксимирующие значения функции без построения в явном виде аппроксимирующего полинома. В результате получаем формулу для полинома P_n , аппроксимирующую функцию f(x):

$$\begin{split} P(x) = & P(x_0) + (x - x_0) P(x_0, x_1) + (x - x_0)(x - x_1) P(x_0, x_1, x_2) + \ldots + (x - x_0)(x - x_1) \ldots (x - x_n) P(x_0, x_1, \ldots, x_n); \\ 1. & \\ & P(x_0, x_1) = \frac{P(x_0) - P(x_1)}{x_0 - x_1} & \longrightarrow \text{разделённая разность 1-го порядка}; \end{split}$$

$$P(x_0, x_1) = \frac{1}{x_0 - x_1}$$
 $P(x_0, x_1, x_2) = \frac{P(x_0, x_1) - P(x_1, x_2)}{x_0 - x_2}$ — разделённая разность 2-го порядка и т.д.

Значения $P_n(x)$ в узлах совпадают со значениями f(x)

СОДЕРЖАНИЕ РАБОТЫ:

- 1. Получить вариант у преподавателя.
- 2. Выполнить задания согласно своему варианту

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

- 2. Изучить материал лекции.
- 3. Ознакомиться с заданиями практической работы.
- 4. Изучить методические указания.
- 5. Выполнить задания.
- 6. Ответить на контрольные вопросы.
- 7. Оформить отчет по проделанной работе.

ЗАДАНИЯ ДЛЯ ВЫПОЛНЕНИЯ:

1. По данной таблице построить интерполяционный многочлен Лагранжа.

Вариант 1						
x -1 0 3						
y	-3	5	2			
Вариант 2						
X	2	3	5			
y	4	1	7			
Вариант 3						
X	0	2	3			
v	-1	-4	2			

	Вариант 4					
	X	7	9	1		
				3		
	y	2	-2	3		
	Вариант 5					
	X	-3	-1	3		
	y	7	-1	4		
	Вариант 6					
	X	1	2	4		
	y	-3	-7	2		
-				1		

Вариант 7					
-2	-1	2			
4	9	1			
Вариант 8					
2	4	5			
9	-3	6			
Вариант 9					
-4	-2	0			
2	8	5			
	-2 4 Вариа 2 9 Вариа -4	-2 -1 4 9 Вариант 8 2 9 -3 Вариант 9 -4 -2			

Вариант 10						
X	-1	1,5	3			
y	4	-7	1			

2. Найти приближенное значение функции в указанной точке.

	Вариант 1					
X	0,43	0,48	0,55	0,62	0,7	0,75
y	1,63597	1,73234	1,87686	2,03345	2,22846	2,35973
ar	g=0,702					
Вариант 2						
X	0,02	0,08	0,12	0,17	0,23	0,3
y	1,02316	1,0959	1,14725	1,21483	1,3012	1,40976
ar	g=0,102					

X	0,35	0,41	0,47	0,51	0,56	0,64
y	2,73951	2,3008	1,96864	1,78776	1,59502	1,3431
ar	arg=0,526					
	Вариант 4					
X	0,41	0,46	0,52	0,6	0,65	0,72
y	2,57418	2,32513	2,09336	1,86203	1,74926	1,62098
arg	g=0,616					
		В	ариант 5			
X	0,68	0,73	0,8	0,88	0,93	0,99
y	0,80866	0,89492	1,02964	1,20966	1,34087	1,52368
arg	g=0,896					
		В	ариант 6			
X	0,11	0,15	0,21	0,29	0,35	0,4
y	9,05421	6,61659	4,6917	3,35106	2,73951	2,36522
arg	g=0,314					
Вариант 7						
X	0,43	0,48	0,55	0,62	0,7	0,75
y	1,63597	1,73234	1,87686	2,03345	2,22846	2,35973
arg	g=0,512					

Вариант 8						
X	0,02	0,08	0,12	0,17	0,23	0,3
у	1,02316	1,0959	1,14725	1,21483	1,3012	1,40976
ar	arg=0,114					
Вариант 9						
X	0,35	0,41	0,47	0,51	0,56	0,64
у	2,73951	2,3008	1,96864	1,78776	1,59502	1,3431
arg=0,453						
Вариант 10						
X	0,41	0,46	0,52	0,6	0,65	0,72
у	2,57418	2,32513	2,09336	1,86203	1,74926	1,62098
arg=0,478						

3. Построить эмпирическую формулу для функции у, заданной таблицей (воспользоваться интерполяционной формулой Ньютона):

	1 1									
	1	2	3	4	5	6	7	8	9	
1,1	0,048809	0,065602	0,235622	2,024114	3,024114	-	3,124114	2,624114	3,624114	1,
						0,45119				
1,2	0,095445	0,129243	0,285172	2,046635	3,046635	-	3,146635	2,646635	3,646635	1,
						0,40455				
1,3	0,140175	0,191138	0,337167	2,06779	3,06779	-	3,16779	2,66779	3,66779	1,
						0,35982				
1,4	0,183216	0,251465	0,391022	2,087757	3,087757	-	3,187757	2,687757	3,687757	1,
						0,31678				
1,5	0,224745	0,310371	0,446254	2,106682	3,106682	-	3,206682	2,706682	3,706682	1,
						0,27526				
1,6	0,264911	0,367981	0,502475	2,124683	3,124683	_	3,224683	2,724683	3,724683	1,
						0 23509		-		

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Понятие интерполяции.
- 2. Отличие интерполяции от экстраполяции.

СОСТАВЛЕНИЕ ОТЧЕТА

- 1. Номер и наименование практической работы
- 2. Цель работы
- 3. Номер выполняемого задания и подробное оформление

Форма отчета: отчет с решением, ответы на контрольные вопросы, защита

Практическое занятие№ 6

Тема: Вычисление интегралов методами численного интегрирования.

Цель: закрепить навыки составления интерполяционных многочленов сплайнами.

Оборудование: тетрадь, ручка

Методические указания: ознакомиться с теорией, выполнить задания

Ход выполнения:

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

Задача интерполирования состоит в том, чтобы по значениям функции f(x) в некоторых точках отрезка восстановить ее значения в остальных точках отрезка.

Сплайн-аппроксимация. Сплайном называется функция, которая вместе с несколькими производными непрерывна на отрезке [a,b], а на каждом частном интервале этого отрезка $[x_i,x_{i+1}]$ в отдельности являются некоторым многочленом невысокой степени. Обычно применяют кубический сплайн, то есть на каждом локальном интервале функция приближается к полиному 3-го порядка.

Кубический сплайн на отрезке $[x_i, x_{i+1}]$ имеет вид:

$$S_{3} = \frac{\left(x_{i+1} - x\right)^{2} \left(2\left(x - x_{i}\right) + h\right)}{h^{3}} f_{i} + \frac{\left(x - x_{i}\right)^{2} \left(2\left(x_{i+1} - x\right) + h\right)}{h^{3}} f_{i+1} + \frac{\left(x_{i+1} - x\right)^{2} \left(x - x_{i}\right)}{h^{2}} m_{i} + \frac{\left(x - x_{i}\right)^{2} \left(x - x_{i+1}\right)}{h^{2}} m_{i+1}$$

СОДЕРЖАНИЕ РАБОТЫ:

- 1. Получить вариант у преподавателя.
- 2. Выполнить задания согласно своему варианту

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

- 1. Изучить материал лекции.
- 2. Ознакомиться с заданиями практической работы.
- 3. Изучить методические указания.
- 4. Выполнить задания.
- 5. Оформить отчет по проделанной работе.

ЗАДАНИЯ ДЛЯ ВЫПОЛНЕНИЯ:

1. Построить кубический сплайн для функции:

1 B. $y=\cos x$, n=5, $[0.5\pi/2]$

2 B. $y=3^x$, $x_0=-1$, $x_1=0$, $x_2=1$.

3 B. y=tg x, n=4, $[0,2\pi]$

4 B. $y=\sin 2x$, n=6, $[0,3\pi]$

5 B. y=-cos x, n=5, $[0.5\pi/2]$

6 B. $y=\cos 2x$, n=4, $[0,2\pi]$

7 B. $y=4^x$, $x_0=-1$, $x_1=0$, $x_2=1$

8 B. $y=(1/2)^x$, $x_0=-1$, $x_1=0$, $x_2=1$

9_{B.} $y=1/2\sin x$, n=4, $[0,2\pi]$

10 B. y=ctgx, n=6, $[0,3\pi]$

2. Построить графики для каждого вида интерполирования функции.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что называется, сплайном?
- 2. Как выполняется построение кубического сплайна?

СОСТАВЛЕНИЕ ОТЧЕТА

- 1. Номер и наименование практической работы
- 2. Цель работы
- 3. Номер выполняемого задания и подробное оформление

Форма отчета: отчет с решением, ответы на контрольные вопросы, защита

Практическое занятие№ 7

Тема: Применение численных методов для решения дифференциальных уравнений.

Цель: закрепить навыки решения обыкновенных дифференциальных уравнений различными методами.

Оборудование: тетрадь, ручка

Методические указания: ознакомиться с теорией, выполнить задания

Ход выполнения:

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

Решить дифференциальное уравнение y'=f(x,y) (1) численным методом - значит для заданной последовательности аргументов x_0 , $x_1...$, x_n и числа y_0 , не определяя функцию y=F(x), найти такие значения $y_1, y_2,..., y_n$, что $y_i=F(x_i)(i=1,2,...,n)$ и $F(x_0)=y_0$.

Величина h=x_k-x_{k-1} называется шагом интегрирования.

Memod Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции y(x).

Рекуррентные формулы метода Эйлера:

$$\begin{aligned} y_{\kappa+1} &= y_{\kappa} + \alpha_{\kappa} h \\ x_{k+1} &= x_k + h \\ \alpha_k &= f(x_{k+h/2}, y_k + f(x_k, Y_k)h/2) \\ y_k &= y_{k-1} + f(x_{k-1}, y_{k-1})h \end{aligned}$$

Сначала вычисляют вспомогательные значения искомой функции $y_{k+1/2}$ в точках $x_{k+1/2}$, затем находят значение правой части уравнения (1) в средней точке $y'_{k+1/2} = f(x_{k+1/2}, y_{k+1/2})$ и определяют y_{k+1} .

Для оценки погрешности в точке x_k проводят вычисления y_k с шагом h, затем с шагом 2h и берут 1/3 разницы этих значений:

$$|y_k^*-y(x_k)|=1/3(y_k^*-y_k),$$

где у(х)-точное решение дифференциального уравнения.

Метод Рунге-Кутта 2-го порядка. Состоит в последовательных расчетах по формулам

$$k_{1} = f(x_{m}, y_{m})$$

$$k_{2} = f(x_{m} + h, y_{m} + hk_{1})$$

$$y_{m+1} = y_{m} + \frac{h}{2}(k_{1} + k_{2})$$

начиная с точки (x_0, y_0) .

Метод Рунге–Кутта 2-го порядка имеет погрешность порядка kh^3 .

Метод Рунге-Кутта 4-го порядка. Состоит в последовательных расчетах по формулам:

$$k_{1} = f(x_{m}, y_{m})$$

$$k_{2} = f\left(x_{m} + \frac{h}{2}, y_{m} + \frac{h}{2}k_{1}\right)$$

$$k_{3} = f\left(x_{m} + \frac{h}{2}, y_{m} + \frac{h}{2}k_{2}\right)$$

$$k_{4} = f\left(x_{m} + h, y_{m} + hk_{3}\right)$$

$$y_{m+1} = y_{m} + \frac{h}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

начиная с точки (x_0, y_0) .

Метод Рунге–Кутта 4-го порядка имеет погрешность порядка kh^5

СОДЕРЖАНИЕ РАБОТЫ:

- 1. Получить варианты заданий у преподавателя.
- 2. Решить дифференциальное уравнение методом Эйлера и методом Рунге-Кутта 4-го порядка (n=5).
- 3. Определить погрешности вычислений.

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

- 1. Изучить материал лекции.
- 2. Ознакомиться с заданиями практической работы.
- 3. Изучить методические указания.
- 4. Выполнить задания.
- 5. Оформить отчет по проделанной работе.

ЗАДАНИЯ ДЛЯ ВЫПОЛНЕНИЯ:

№ варианта	Уравнение	№ варианта	Уравнение
1	y' = x + 2y, y(0) = 1	2	$y' = e^{-x}, y(0) = 1$
3	$y' = \frac{xy - y^2}{x^2 - 2xy}, y(1) = 1$	4	$y = \frac{x+y}{x-y}, y(1)=0$

	·		·
5	$y = \frac{2y}{x}$, y(1)=0	6	$y = \frac{x - y}{x + y}, y(1) = 0$
7	$y = \left(-\frac{x}{y}\right), y(0) = 5$	8	y'=2y+3, $y(0)=3$
9	$y' = 2y^2 + y$, $y(0) = 3$	10	$y' = e^x + 1$, $y(0) = 0$
11	$y' = x + 2y^2$, $y(0) = 0$	12	$y'=x^2y+x^3$, y(1)=0
13	$y'=x+\frac{xy}{x^2+1}, y(0)=1$	14	$y' = \frac{y}{x-1} + \frac{y^2}{x-1}, y(0)=1$
15	$y' = \frac{y}{y^2 + x}, y(1) = 1$	16	$y = \frac{\cos x}{x}$, $y(1)=1$
17	$y'=x^2+y^2$, $y(0)=-1$	18	$y'=x^3+y^2$, $y(0)=1$
19	$y = x^3 - y^2$, $y(0) = -1$	20	$y'=x^2+y^3$, $y(0)=0$
21	$y = x^3 + y^3$, $y(0) = 0$	22	$y'=x^3-y^3$, $y(0)=1$
23	$y = x + \frac{y}{x}$, $y(1) = 0$	24	$y'=1 + x^2 + \frac{2xy}{x^2 + 1}, y(0)=1$
25	$y = \frac{1}{\ln x}, y(2) = 1$	26	$y = \frac{1}{x+y}, y(0) = -1$
27	$y' = e^{-x}$, $y(0) = 1$	28	$y' = y - x^4$, $y(0) = 1$
29	$y'=3x^2-y^2$, $y(1)=1$	30	$y = x^3 + 2y^2$, $y(0) = 1$

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какое решение дифференциального уравнения называют общим решением? Какое частным?
- 2. В чем принципиальное отличие методов Эйлера и Рунге-Кутта?
- 3. Как вычислить погрешности вычислений при применении методом Эйлера и Рунге-Кутта?

СОСТАВЛЕНИЕ ОТЧЕТА

- 1. Номер и наименование практической работы
- 2. Цель работы
- 3. Номер выполняемого задания и подробное оформление

Форма отчета: отчет с решением, ответы на контрольные вопросы, защита

4. ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

4.1 Основные печатные и (или) электронные издания:

О-1. Численные методы: учебник и практикум для среднего профессионального образования / У. Г. Пирумов [и др.]; под редакцией У. Г. Пирумова. — 5-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2024. — 421 с. — (Профессиональное образование). — ISBN 978-5-534-11634-2. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/542793 (дата обращения: 03.05.2025).

О-2. Гателюк, О. В. Численные методы: учебное пособие для среднего профессионального образования / О. В. Гателюк, Ш. К. Исмаилов, Н. В. Манюкова. — Москва: Издательство Юрайт, 2024. — 140 с. — (Профессиональное образование). — ISBN 978-5-534-07480-2. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/538734 (дата обращения: 03.05.2025).

4.2 Дополнительные печатные и (или) электронные издания (электронные ресурсы):

Д-1. Колдаев, В.Д. Численные методы и программирование: учебное пособие / Под ред. Л. Г. Гагариной. - М.: "ФОРУМ": ИНФРА-М, 2009. – 336 с.

ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЕННЫХ В МЕТОДИЧЕСКИЕ УКАЗАНИЯ

№ изменения, дата внесения, № страницы с изменением				
Было	Стало			
Основание:				
Подпись лица, внесшего изменения				